摘要
提出了一个新的改进型指数双向联想记忆模型(improvedeBAM,简称IeBAM).通过定义有界且随状态改变而下降的能量函数,证明了IeBAM在状态的同、异步更新方式下的稳定性,一方面排除了Wang的修正指数BAM(modifiedeBAM,简称MeBAM)和Jeng的eBAM(exponentialBAM)的稳定性证明中所作的不合理假设;另一方面,放宽了对BAM(bidirectionalassociativememory)的连续性假设的要求,并避免了补码问题.理论分析和计算机模拟结果表明。
In this paper, a new improved exponential bidirectional associative memory (IeBAM) model is proposed. Its stability in synchronous and asynchronous updating modes of the states is proven by defining an energy function which is bounded and decreases as the states change. On one hand, IeBAM eliminates the unreasonable hypotheses in the stability proofs of both Wang's modified exponential BAM (MeBAM) and Jeng's exponential BAM (eBAM). On the other hand, it relaxes the continuity assumption of the BAM (bidirectional associative memory) and avoids the complement encoding problem. The theoretical analysis and computer simulations indicate that the IeBAM has higher storage capacity and better errorcorrecting capability than the MeBAM and the eBAM.\=
出处
《软件学报》
EI
CSCD
北大核心
1999年第4期415-420,共6页
Journal of Software
基金
国家自然科学基金
关键词
神经网络
(指数)联想记忆
稳定性
双向性
性能估计
Neural networks, (exponential) associative memories, stability, bidirectionality, performance evaluation.