期刊文献+

具有接近容量限性能的可有效编码的QC-LDPC码 被引量:1

Efficiently Encodable Nonbinary Quasi-Cyclic LDPC Codes with Near-Capacity Performance
下载PDF
导出
摘要 提出了一类有限域上的非二元准循环低密度校验(QC-LDPC)码。其校验矩阵具有特殊的结构,既可以用来构造规则码,也可以用来构造非规则码;特别的,通过优化重量为2的列的域元素选取,避免了低码重码字,改善了码的距离特性。针对此类码,提出了一种有效的编码算法,可采用简单的移位寄存器电路实现。复杂度分析表明这是一类线性时间可编的码,而且存储消耗很低。利用所提出的构造方法,在不同的域上构造了4个码。仿真结果表明,与高阶调制相结合,这些码展现出接近Shannon限的性能。 A class of nonbinary quasi-cyclic low-density parity-check(QC-LDPC) codes is presented.The special structure of the parity-check matrix allows the construction of both regular and irregular codes;in particular,low-weight codewords are avoided by optimizing the choices of field elements in weight-2 columns,thus improving the distance property.An efficient encoding algorithm for this class of codes is proposed,which can be implemented through simple shift-register circuits.Complexity analysis shows that they are a class of linear-time encodable codes with very low storage consumptions.Four codes are constructed over different fields using the proposed method.Simulation results show that when combined with higher-order modulation,these codes perform close to the Shannon limits.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第5期725-730,共6页 Journal of University of Electronic Science and Technology of China
基金 高等学校学科创新引智基地项目(B08038) 中央高校基本科研业务费专项资金(3Y10000901017) 国家973项目(2010CB328300)
关键词 有效编码 低密度校验码 非二元 准循环 SHANNON限 efficient encoding low-density parity-check(LDPC) code nonbinary quasi-cyclic(QC) Shannon limit
  • 相关文献

参考文献13

  • 1GALLAGER R G Low density parity cheek codes[J].IEEE Trans Inform Theory,1962,8(1):21-28.
  • 2MACKAY D J C,Neal R M.Near shannon limit performance of low density parity check codes[J].IEE Electron Lett,1996,32(1 8):1645-1646.
  • 3LIVA G,SONG Shu-mei,LAN Lan,et al.Design of LDPC codes:a survey and new results[J].Journal of Communication Software and Systems,2006,2(3):191-211.
  • 4史治平,朱南,李少谦.一类广义RA码的优化设计方法[J].电子科技大学学报,2008,37(4):481-484. 被引量:2
  • 5DAVEY M C,MACKAY D.Low-density parity check codes over GF(q)[J].IEEE Commun Lett,1998,2(6):165-167.
  • 6DAVEY M C.Error-correction using low-density parity-check codes[D].Cambridge:University of Cambridge,1999.
  • 7SONG Shu-mei,ZHOU Bo,LIN Shu,et al.A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields[J].IEEE Trans Commun,2009,57(1):84-93.
  • 8ZHOU Bo,KANG Jing-yu,LIN Shu,et al.High performance non-binary quasi-cyclic LDPC codes on euclidean geometries[J].IEEE Trans Commun,2009,57(5):1298-1311.
  • 9POULLIAT C,FOSSORIER M,DECLERCQ D.Design of regular(2,dc)-LDPC codes over GF(q)using their binary images[J].IEEE Trans Commun,2008,56(10):1626-1635.
  • 10HU Xiao-yu,ELEFTHERIOU E.Binary representation of cycle Tanner-graph GF(2b)codes[C] //Proc IEEE Intern Conf on Commun.Paris:[s.n.] ,2004:528-532.

二级参考文献11

  • 1高宏峰,许宗泽,吴援明.IRA码简化译码算法的研究[J].电子科技大学学报,2005,34(1):40-43. 被引量:5
  • 2BERROU C, GLAVIEUX A, THITIMAJSHIMA P. Near Shannon limit error-correcting coding and decoding: turbo-codes[C]//Proceedings of IEEE International Conference On Communication. Geneva: [s.n.], 1993: 1064- 1070.
  • 3MACKAY D J C, NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 32 (18): 1645-1646.
  • 4DIVSALAR D, JIN H, MCELIECE R. Coding theorems for Turbo like codes[C]//Proceedings of the 36th Annual Allerton Conference on Communication Control and Computing. Monticello, IL, USA: [s.n.] 1998, 9: 201-210.
  • 5YUE Guo-sen, WANG Xiao-dong. Optimization of irregular repeat accumulate codes for MIMO systems with iterative receivers[J].IEEE Trans on Wireless Communications. November 2005, 4(6): 2843-2855.
  • 6JOHNSON S J, WELLER S R. Practical interleaves for systematic repeat-accumulate codes[C]//Proceedings of Vehicular Technology Conference, 2006 VTC 2006-spring. [s.1]: IEEE press, 2006, 3:1358-1362.
  • 7LIVA G, PAOLINI E, CHIANI M, Simple reconfigurable low-density parity-check codes[J]. IEEE Commun Letters, 2005, 9: 258-260.
  • 8European Standard. DVB-S2. ETSI EN 302 307 V1.1.1[S]// France: ETSI, 2004-6.
  • 9JOHNSON S J, WELLER S R. Constructions for irregular repeat-accumulate codes[C]//Proceedings of IEEE INT Sym. Inform Theory. Adelaide, Australia: [s.n.], 2005: 1-5.
  • 10MCELIECE J, MACKAY D J C, CHENG J F. Turbo decoding as an instance of Pearl's "belief propagation" algorithm[J]. Journal on Selected Areas in Communications, 1998, 16(2): 140-152.

共引文献1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部