期刊文献+

基于Cycle Spinning Contourlet变换和总变分最小化的遥感图像去噪算法(英文) 被引量:3

Remote Sensing Image Denoising Algorithm Based on Fusion Theory Using Cycle Spinning Contourlet Transform and Total Variation Minimization
下载PDF
导出
摘要 针对大部分已有的遥感图像去噪算法在去噪的同时不能有效的保留细节和增强边缘,提出了一种基于Cycle Spinning Contourlet变换和总变分最小化的图像去噪新算法.该算法依据了Cycle Spinning Contourlet变换能够很好的保留原始图像的细节和纹理信息,而总变分最小化方法具有在去噪的同时增强图像边缘的特性,因此使用所提出的融合规则对两种算法去噪后的图像进行融合能够取得更好的增强效果.通过对比,实验结果表明该算法不仅能在很大程度上削弱分别由平移不变Contourlet变换和总变分最小化的图像去噪方法产生的伪吉布斯现象和阶梯效应,而且视觉效果和PSNR值均优于其它方法,同时该算法能够保留更多的光谱信息,因此该算法是一种有效的遥感图像去噪算法. In order to solve the problem that most of existing image denoising methods insufficiency preserve the details and enhance edges while implementing denoising, a new method for remote sensing image denoising is proposed, based on a combination of cycle spinning contourlet transform (CT), and the total variation (TV) minimization scheme. The proposed method relies on principles that CT scheme is well suited for preserving detailed and fine textures information of original image while TV minimization denoising scheme is capable of enhancing sharpened significant edges while denoising, therefore to fuse the two schemes using the proposed fusion rule can achieve better results. Compared with several commonly used approaches, the experimental results show that this novel algorithm is capable of reducing Gibbs phenomenon and staircase effect produced by CT and TV denoising methods respectively, superior both in visual quality of denoising and Peak Signal to Noise Ratio (PSNR), and preserves more spectral information and less spectral distortion simultaneously.
作者 赵杰 杨建雷
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第9期1658-1665,共8页 Acta Photonica Sinica
基金 Supported by the Research and Development Projects of Science and Technology of Hebei Province(06242188D-2) the Natural Science Foundation of Hebei Province(F2007000221)
关键词 遥感图像 CONTOURLET变换 CYCLE SPINNING 总变分最小化 图像去噪 融合 Remote sensing image Contourlet transform Cycle Spinning Total variation minimization Image denoising Fusion
  • 相关文献

参考文献6

二级参考文献63

共引文献85

同被引文献31

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2殷明,刘卫.非下采样Contourlet变换域混合统计模型图像去噪[J].光子学报,2012,41(6):751-756. 被引量:10
  • 3汪雪林,赵书斌,彭思龙.基于小波域隐马尔可夫树模型的图像复原[J].计算机学报,2005,28(6):1006-1012. 被引量:22
  • 4江洁,邓琼,张广军.基于小波变换的正则化盲图像复原算法[J].光学精密工程,2007,15(4):582-586. 被引量:19
  • 5Tian Y, Rao C H, Wei K. Postprocessing of adaptive optics images based on frame selection and multiframc blind deconvolution [ C ]// Adaptive Optics Systems. Marseille, France: SPIE, 2008.
  • 6Schulz T J. Nonlinear models and methods for space-object ima- ging through atmospheric turbulence[ C ]// The 1996 IEEE Inter- national Conference on Image Processing. Lausanne, Switzerland: IEEE, 1996.
  • 7Matson C L,Roggemann M C . Noise reduction in adaptive optics imagery with the use of support constraints [ J]. Applied Optics, 1995, 34(5) :767 -780.
  • 8Tyler D W, Matson C L. Reduction of nonstationary noise in tele- scope imagery using a support constraint [ J ]. OSA Optics Ex- press, 1997, 1(11):347-350.
  • 9Zhang L J, Yang J H, Su W. Research on blind deconvolution algorithm of muhiframe turbulence-degraded images[ J]. Journal of Information and Computational Science, 2013, 10 ( 12 ) : 3625 - 3633.
  • 10Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm [ J]. Journal of the Royal Statistical Society Series B, 1977, 39( 1 ) :2 -20.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部