期刊文献+

复杂背景下钢索图像的纹理分割与边界识别 被引量:1

Texture Segmentation and Boundary Recognition of Wire Rope Images in Complicated Background
下载PDF
导出
摘要 针对复杂背景下钢索图像难以准确分割的问题,提出一种基于纹理分析的钢索图像分割与边界识别方法.采用基于模糊Hough变换的纹理方向检测方法确定钢索走向,利用边缘方向密度直方图作为纹理特征,对与钢索纹理方向相应的边缘方向赋予不同权重,抑制纹理分割中背景的干扰,对钢丝绳图像进行聚类分割,采用检测平行直线的方法确定其边界,并根据算法参量对边界进行修正.在实验中,对比了边缘方向密度直方图特征与灰度共生矩阵、局部二值模式在钢索图像纹理分割中的结果与计算时间,结果表明边缘方向密度直方图特征计算速度快、受背景干扰小,分割准确率高.本文方法无须预先训练,受背景干扰小,可以准确地识别出钢索并确定其边界,能满足钢丝绳视觉检测的要求. In order to detect the boundary of wire rope exactly in visual inspection of surface defection, a novel texture segmentation and boundary recognition method is proposed. The fuzzy Hough transform is used to detect the direction of rope texture. A new texture feature is proposed based on the Edge Direction Density Histogram (EDDH). The EDDH is weighted based on the direction of rope texture in Fuzzy C-Means clustering segmentation. The boundary of wire rope is recognized preliminary to detect parallel lines in the map of membership by Hough transform. Moreover, an adaptive boundary correction method is presented to confirm the boundary exactly. The results of texture segmentation and boundary recognition by the proposed method are compared with the results of Gray Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP) respectively. The experimental results show that the proposed method can realize wire rope image segmentation and boundary recognition effectively, and its performance is better than the GLCM′s and LBP’s.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第9期1666-1671,共6页 Acta Photonica Sinica
基金 "十一五"国防预研项目(51317030106)资助
关键词 计算机视觉 钢索图像 纹理分割 边界识别 Computer vision Wire rope image Texture segmentation Boundary recognition
  • 相关文献

参考文献8

  • 1HONEYCUTT C E,PLOTNICK R.Image analysis techniques and gray-level co-occurrence matrices(GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures[J].Computers & Geosciences,2008,34(11):1461-1472.
  • 2KATO Z,PONG T.A Markov random field image segmentation model for color textured images[J].Image and Vision Computing,2006,24(10):1103-1114.
  • 3MANTHALKAR R,BISWAS P K,CHATTERJI B N.Rotation invariant texture classification using even symmetric Gabor filters[J].Pattern Recognition Letters,2003,24(12):2061-2068.
  • 4张志安,冯宏伟.一种新的基于纹理和空间分布特征的图像检索[J].光子学报,2008,37(2):400-404. 被引量:10
  • 5TSAI D M,HSIEH CY.Automated surface inspection for directional textures[J].Image and Vision Computing,1999,18(14):49-62.
  • 6BASAK J,PAL S K.Theoretical quantification of shape distortion in fuzzy Hough transform[J].Fuzzy Sets and Systems,2005,154(24):227-250.
  • 7OJALA T,PIETIKAINEN M,MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Trans on PAMI,2002,24(7):971-987.
  • 8CHUANG K S,TZENG HL,CHEN S,et al.Fuzzy C-means clustering with spatial information for image segmentation[J].Computerized Medical Imaging and Graphics,2006,30(1):9-15.

二级参考文献9

  • 1曾智勇,张学军,崔江涛,周利华.基于显著兴趣点颜色及空间分布的图像检索新方法[J].光子学报,2006,35(2):308-311. 被引量:21
  • 2杨必武,郭晓松,赵敬民,王玉森.基于小波变换的视差图像全局几何配准新算法[J].光子学报,2007,36(3):574-576. 被引量:9
  • 3BARALDI A, PARMIGGIAN F. An investigation of the texture characteristics associated with gray level co occurrence matrix statistical parameters[J]. IEEE Transaction on Geoscience and Remote Sensing, 1995,33(2) : 293-303.
  • 4MANDAL M K, ABOULNASR T, PANCHANATHAN S Fast wavelet histogram techniques for image indexing [J] Computer Vision and Image Understanding, 1999,75 ( 1/2 ):99-110.
  • 5PUN C M, LEE M C. Rotation invariant texture feature for content based image retrieval[J]. Computer Vision and Image Understanding, 2003,89(1) : 24-43.
  • 6SIMONCELLI E P, FREEMAN W T, ADELSON E H, et al. Shiftable mutiscale transforms[J]. IEEE Trans Information Theory, 1992,38(2) : 587-606.
  • 7XIONG H L, ZHANG T X, MOON Y S. A translation and scale invariant adaptive wavelet transform[J]. IEEE Trans on Image Processing,2000,9(12) :2100-2108.
  • 8NASTAR C, MITSCHKE M, MEIHAC C. Efficient query refinement for image retrieval [ C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, California, IEEE Computer Society, 1998 : 547-552.
  • 9SMEULDERS A W M, SANTINI S, WORRING M, et al. Content based image retrieval at the end of the early years[J].IEEE Transactions on Pattern Analysis and Machine Intelligence ,2000,22(12):1349-1380.

共引文献9

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部