摘要
提出一种结合Steiner点扰动和矢量边界推进三角化技术的三维约束非结构四面体网格生成方法.在由物面节点生成的Delaunay网格基础上,利用Conforming方法恢复计算域形状,然后利用点扰动技术迫使所有Steiner点全部从约束边、面上转移,并利用矢量边界推进三角化方法重构约束面三角剖分,进而得到完全恢复所有约束条件的Constrained网格,并证明方法的收敛性和稳定性.
A constrained boundary recovery algorithm for 3D unstructured meshes which combines vector boundary advancing triangulation method (VBATM) with Steiner point perturbation is presented. From conforming mesh, constrained edges and faces could be recovered by Steiner point perturbation and VBATM to reconstruct triangulation on constrained faces. The tetrahedral-eating method can be used to get rid of Steiner points as many as possible. Different from existing methods, the algorithm does not need edges/faces swapping (flip) method and side compress method. Convergence and stability of the method are theoretically studied. Numerical examples are provided to illustrate effectiveness of the method.
出处
《计算物理》
EI
CSCD
北大核心
2010年第5期649-657,共9页
Chinese Journal of Computational Physics
基金
国家自然科学基金(标准号:10571178)资助项目