期刊文献+

基于相交关系的GML空间线对象离群检测算法 被引量:1

An Algorithm for Detecting Outlier Lines Based on Intersection Relationship for GML Data
下载PDF
导出
摘要 提出了一种基于相交关系的GML空间线对象离群检测算法DOL-IR,该算法首先计算GML线对象与其他空间对象的相交关系,定义基于相交关系的相异度,将其作为空间线对象之间距离的度量准则,利用DB-SCAN聚类算法检测离群的基于空间相交关系的线对象.实验结果表明,算法DOL-IR能准确地检测出离群的基于空间相交关系的线对象,并具有较高的效率. A new algorithm DOL_IR is presented for detecting outlier lines based on intersection relationship for GML data.Intersection relations between spatial lines and other spatial objects are computed.The difference degree between one line and another line is defined as the standard of the distance between one line and another line.Algorithm DBSCAN is used to detect outlier lines based on intersection relationship.The experimental results show that algorithm DOL_IR can detect outlier lines based on intersection relationship accurately and effectively.
作者 朱娟 吉根林
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期127-130,共4页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(40871176)
关键词 GML 线对象 相交关系 离群检测 GML lines intersection relationship outlier detection
  • 相关文献

参考文献11

  • 1Barnett V,Lewis T.Outliers in Statistical Data[M].New York:John Wiley & Sons,1994.
  • 2Knorr E,Ng R.Finding intensional knowledge of distance-based outliers[C] // Proc of the 25th Verg Large Databases Conference.Edinburgh:Morgan Kaufmann Publishers,1999:211-222.
  • 3Breunig M M,Kriegel H P,Ng R T,et al.Optics of:identifying density-based local outliers[C] // Proc of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases,Lecture Notes in Computer Science 1704.Prague:Springer,1999:262-270.
  • 4Prearata F,Shamos M.Computational Geometry:An Introduction[M].Berlin:Springer-Verlag,1988.
  • 5Jagadish H V,Koudas N,Muthukrishnan S.Mining deviants in a time series databases[C] // Proc of the 25th Conference on Very Large Databases.Edinburgh:Morgan Kaufmann Publishers,1999:102-113.
  • 6郑建国,焦李成.偏差检测挖掘方法研究[J].计算机工程,2001,27(8):33-35. 被引量:7
  • 7Sheng Yijiang,Qing Boan.Clustering-based outlier detection method[C] // 5 th International Conference on Fuzzy Systems and Knowledge Discovery.Piscataway:IEEE Computer Society,2008:429-433.
  • 8张书亮,闾国年,龚健雅,等.地理标示语言--Geo-Web基础[M].北京:科学出版社,2008:3-4.
  • 9陈佳春,吉根林.基于空间相邻关系的GML点对象离群检测算法[J].南京师范大学学报(工程技术版),2009,9(1):61-63. 被引量:4
  • 10李尼格,鲍培明,沙露.一种基于面包含关系的GML空间离群面检测算法[J].广西师范大学学报(自然科学版),2009,27(3):118-121. 被引量:3

二级参考文献15

  • 1张骏,秦小麟.利用简化9交模型进行三维拓扑分析[J].计算机辅助设计与图形学学报,2006,18(12):1817-1823. 被引量:9
  • 2Barnett V,Lewis T.Outliers in Statistical Data[M].New York:John Wiley & Sons,1994:194-223.
  • 3Knorr E M,Ng R T.Algorithms for mining distance-based outliers in large datasets[C]//Proc of 1998 International Conference.Very Large Data Base (VLDB98).New York:VLDB Endowment,1998:392-403.
  • 4Breunig M M,Krueger H P,Ng R,et al.LOF:identifying density-based local outliers[C]//Proc of ACM SIGMOD2000 International Conference on Management of Data.Dallas,Texas:ACM Press,2000:93-104.
  • 5Knorr E M,Ng R T.A unified notion of outliers:properties and computation[C]//Proc the 3rd International Conference on Knowledge Discovery and Data Mining.California:IEEE Press,1997:219-222.
  • 6HAN Jia-wei,KAMBER M.Data mining:concepts and techniques[M].San Fransisco..Morgan Kaufmann Publishers,2001.
  • 7KNORR E M,NG R T.Algorithms for mining distance-based outliers in large data sets[C]//Proceedings of the 24th VLDB Conference.San Francisco,CA:Morgan Kaufmann Publishers,1998:392-403.
  • 8BREUNIG M M,KRIEGEL、H P,NG R T,et al.LOF:identifying density-based local outliers[J].ACM SIGMOD Record,2000,29(2):93-104.
  • 9PAPADIMITRIOU S,KITAGAWA H,GIBBONS P B,et al.LOCI:fast outlier detection using the local correlation integral[C]//Proceedings of the 19th International Conference on Data Engineering.New York:IEEE Press,2003:315-326.
  • 10REN D,WANG Bao-ying,PERRIZO W.RDF:a density-based outlier detection method using vertical data representation[C]//Proceedings of the 4th IEEE International Conference on Data Mining.New York:IEEE Press,2004:503-506.

共引文献9

同被引文献7

  • 1黄添强,秦小麟,王钦敏.空间离群点的模型与跳跃取样查找算法[J].中国图象图形学报,2006,11(9):1230-1236. 被引量:3
  • 2KNORR E M, NG R T. Algorithms for mining distancedbased outliers in large datasets [C]//Proceedings of 24^th Very Large Data Bases Conference, New York, USA: [s. n. ] , 1998:392-403.
  • 3BREUNING M M, KRIEGEL H P, NG R T. LOF: Identifying density-based local outliers E C ]//Proceedings of the ACM International Conference on Management of Data, Dallas, Texas, USA: [s. n. ], 2000:427-438.
  • 4BARNETt V, LEWIS T. Outliers in statistical data[M]. New York: John Wiley & Sons. 1994.
  • 5HE Zengyou, XU Xiaofei, DENG Shengchun. Discovering cluster-based local outliers [J].Pattern Recognition Letters, 2003 : 1642-1650.
  • 6JAGADISH H V, KOUDAS N, MUTHUKISHNAN S. Mining deviants in a time series databases [ C ]// Proceedings of Int Conf Very Large Databases, Edinburgh: [s. n. ], 1999:102-113.
  • 7李尼格,鲍培明,沙露.一种基于面包含关系的GML空间离群面检测算法[J].广西师范大学学报(自然科学版),2009,27(3):118-121. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部