期刊文献+

模型的快速降阶技术 被引量:2

Technology on fast order reduction of model
下载PDF
导出
摘要 为快速进行模型的降阶,结合平衡截断(Balanced Truncation,BT)方法和特征正交分解(Proper Orthogonal Decomposition,POD)方法提出一种模型降阶方法.该方法采用频域POD快照矩阵低阶逼近系统的可控、可观Gram矩阵;通过奇异值分解(Singular Value Decomposition,SVD)提取BT+POD模态,对低能量模态截断形成降阶子空间,并将其映射到全阶系统,从而形成基于状态空间的降阶模型(Reduced Order Model,ROM);该模型就成为全阶模型(Full Order Model,FOM)的ROM.通过对阶数n=406的LTI SISO系统和阶数n=9的2区间电力系统进行的验证表明,在保留BT方法输入输出平衡特性的基础上,该方法效率高于BT方法. To perform the order reduction of model quickly,a method is proposed combined with Balanced Truncation(BT) and Proper Orthogonal Decomposition(POD).The snapshot matrix of POD in frequency domain is used to obtain the low-order approximations to the controllable and observable Gram matrixes of the system;the BT + POD modes are extracted by Singular Value Decomposition(SVD),the reduced order subspace is generated by truncating low-energy modes and projected to the full order system,and so the Reduced Order Model(ROM) based on state space is constructed;so the model becomes the ROM of Full Order Model(FOM).An LTI SISO system with order n = 406 and an doubleinterval electric power system with order n = 9 are used to verify the validation of the method,and the results indicate that the method retains the balance characteristics of input and output of BT method and is more efficient than BT method.
出处 《计算机辅助工程》 2010年第3期79-82,96,共5页 Computer Aided Engineering
基金 国家自然科学基金(90816008)
关键词 降阶模型 平衡截断 特征正交分解 奇异值分解 model of reduced order balanced truncation proper orthogonal decomposition singular value decomposition
  • 相关文献

参考文献10

  • 1MOORE B C.Principal component analysis in linear systems:controllability,observability,and model reduction[J].IEEE Trans Automatic Contr,1984,26(1):17-31.
  • 2BAKER M L.Approximation subspace iteration for constructing internally balanced reduced-order models of unsteady aerodynamic systems[C] // 37th AIAA/ASME/ASCE/AHS/ASC Structures,Struct Dynamics & Materials Conf,Salt Lake City,USA,1996.
  • 3HODEL S.Least square approximation solution of the Lyapunov equation[C] // Proc 30th IEEE Conf Decision & Control,Brighton,England,1991.
  • 4JAIMOUKHA I M,KASENALLY E M.Krylov subspace methods for solving large Lyapunov equation[J].SIAM J Numer Anal,1994,31(1):227-251.
  • 5DIMITRIADIS G,vio GARETH A,COOPER J E.Flight-regime dependent reduced order models of CFD/FE aeroelastic systems in transonic flow[C] //48th AIAA/ASME/ASCE/AHS/ASC Structures,Struct Dynamics & Materials Conf,Hawaii,USA,2007.
  • 6FENG Zhenkun,SOULAMANI A.Investigations of nonlinear aeroelasticity using a reduced order fluid model based on POD method[C] //18th AIAA Comput Fluid Dynamics Conf,Miami,USA,2007.
  • 7THOMAS J P,DOWELL E H,HALL K C.Virtual aeroelastic flight testing for the F16 fighter with stores[C] //AIAA 2007-1640,2007.
  • 8HIDALGO P.POD study of the coherent structures with a turbulent spot[C] //AIAA 2006-1099,2006.
  • 9PAUL G,CIZMAS A.An acceleration approach for reduced-order models based on proper orthogonal decompostion[C] //AIAA 2007-713,2007.
  • 10高振斌.基于内平衡变换和Riccati方程的模型降阶及应用[J].系统仿真学报,2004,16(3):597-600. 被引量:4

二级参考文献1

  • 1詹姆希迪M.大系统的建模与控制[M].北京:科学出版社,1986..

共引文献3

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部