期刊文献+

正则竞赛图的有向生成三角形

Spanning Directed Triangles in Regular Tournaments
下载PDF
导出
摘要 2008年N.Lichiardopol在离散数学-竞赛图中经过给定0,1,2个公共顶点的圈.一文中提出以下公开问题:阶为2n+1的正则竞赛图T,对于任意的x∈V(T)是否存在n个有向三角形Ti使得V(Ti)∩V(Tj)=x(1≤i≤j≤n).文章证明了对于阶数为5,7,9的正则竞赛图,该问题答案是肯定的. In 2008,N.Lichiardopol raised the open problem in his article-Cycles in a tournament with pairwise zero,one or two given vertices in common Discrete Math:for regular tournaments T of order 2n+1,is that true for any vertex x∈V(T) that there exists n triangles Ti and V(Ti)∩V(Tj)=x for 1≤ij≤n.In this paper,we proved that the problem is right,where regular tournaments with vertices of 5,7,9.
作者 李杰 李世慧
出处 《太原师范学院学报(自然科学版)》 2010年第3期21-23,共3页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 互竞赛图 正则竞赛图 有向生成三解形集 tournaments regular tournaments spanning directed triangles
  • 相关文献

参考文献3

  • 1Bang Jensen J,Gutin G.Digraphs[M].New York:Springer,2002.
  • 2Chartrand G,Lesniak L.Graphs and digraphs[M].London;Chapman and Hall,1996.
  • 3Lichiardopol N.Cycles in a tournament with pairwise zero,one or tow given vertices in common[J].Discrete Mathematics,2008,308:763-771.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部