期刊文献+

改进的热平衡积分法的细化 被引量:2

Refinement of the Refined Integral Method
下载PDF
导出
摘要 文章讨论了改进的热平衡积分法的细化.将求解区间[0,s]均匀分划,在所得的子区间内选取适当的近似解析解形式,运用改进的热平衡积分法进行求解.通过讨论得知:细化的改进热平衡积分法能很好地提高所求解的精度. Refinement of the refined integral method is discussed in this paper.Divide the interval evenly partition,select the appropriate form of approximate analytic solution in the obtaining sub-interval,and use the refined integral method to solve.It showed that we can raise the accuracy of solution by using refinement of the refined integral method.
作者 马飞飞 令锋
出处 《太原师范学院学报(自然科学版)》 2010年第3期84-87,141,共5页 Journal of Taiyuan Normal University:Natural Science Edition
基金 广东省自然科学基金资助项目(04011600)
关键词 改进的热平衡积分法 细化 近似解析解 精度 refined integral method refinement approximate analytical solution accuracy
  • 相关文献

参考文献9

  • 1Goodman T R.The heat-balance integral and its application to problems involving a change of phase[J].Trans ASME,1958,80:335-342.
  • 2Noble B.Heat balance methods in melting problems[A].Ockendon J R,Hodgkins W R.Moving Boundary Problems in Heat Flow and Diffusion[C].Oxford:Clarendon Press,1995:208-209.
  • 3Sadoun N,Si-Ahmed E.A new analytical expression of the freezing constant in the Stefan problem with initial superheat[J].Numer.Meth.Therm.Probl,1995,9:843-854.
  • 4Sadoun N,Si-Ahmed E,Colinet P.On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions[J].Applied Mathematical Modelling,2006,30:531-544.
  • 5Mitchell S L,Myers T G.Application of standard and refined heat balance integral methods to one-dimensional Stefan problem[J].SIAM Review,2010,52:57-86.
  • 6Mosally F,Wood A S,AL-Fhaid A.An exponential heat balance integral method[J].Applied Mathematical and Computation,2002,130:87-100.
  • 7Mosally F,Wood A S,AL-Fhaid A.On the cenvergence of the heat balance integral method[J].Applied Mathematical Modelling,2005,29:903-912.
  • 8Wood A S.A new look at the heat balance integral method[J].Applied Mathematical Modeling,2001,25:815-824.
  • 9罗佩芳,黄赞,沈京虎.热平衡积分法的细化[J].延边大学学报(自然科学版),2009,35(4):327-331. 被引量:2

二级参考文献5

  • 1Goodman T R. The Heat-balance Integral and Its Application to Problems Involving a Change of Phase[J]. Tran ASME80, 1958 : 335-342.
  • 2Goodman T R. Application of Integral Methods to Transient Nonlinear Heat Transfer[C]//Advances in Heat Transfer. New York: Academic Press, 1964:52-192.
  • 3Bell G E. The Prediction of Frost Penetration[J]. Int J Numer Anal Methods Geomech, 1982,6 : 287- 290.
  • 4Mosally F, Wood A S, AL-Fhaid A. An Exponential Heat Balance Integral Method [J]. Applied Mathematics and Computation, 2002,130:87-100.
  • 5Wood A S. A New Look at the Heat Balance Integral Method[J]. Applied Mathematical Modeling, 2001,25 : 815-824.

共引文献1

同被引文献14

  • 1Goodman T R. The heat-balance integral and its application to problems involving a change of phase[J]. Trans. ASME,Journal of Heat transfer, 1958,80 : 335-342.
  • 2Nacer Sadoun, EL-Khider SI-Ahmed,Pierre Colinet. On the integral method for the one-phase Stefan problem with time-dependent boundary conditions[J]. Appl. Math. Model 2006,30: 531-544.
  • 3Mosally F,Wood A S, AL-Fhaida A. An exponential heat balance integral method. Applied Mathematics and Computation. 2002,130:87-100.
  • 4Langford D. The heat-balance integral method[J].Int J Mass Transfer, 1973,16(12) :2 424-2 428.
  • 5Mitchell S L, Myers T G. Application of standard and refined heat balance integral methods to one-dimensional Stefan problem[J].SIAM Review,2010,52:57-86.
  • 6Myers T G. Optimizing the exponent in the heat balance and refined integral methods[J]. International Communications in Heat and Mass Transfer, 2009,36 : 143-147.
  • 7Myers T G. Optimizing exponent heat balance and refined integral methods applied to Stefan problems[J]. International Journal of Heat and Mass Transfer, 2010,53 : 1 119-1 127.
  • 8Hristov Jordan. Research note on a parabolic heat-balance integral method with unspecified exponent[J]. Thermal Science, 2009,13:49-59.
  • 9Mitchell SL, Myers T G. Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions[J].International Journal of Heat and Mass Transfer,2010,53:3 540-3 551.
  • 10罗佩芳,黄赞.求解融湖下冻土热状况的热平衡积分法[J].肇庆学院学报,2007,28(5):8-11. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部