期刊文献+

基于主从策略的双轮直驱电动汽车转向差速控制 被引量:3

Steering Differential Control of Two-wheeled Direct-drive Electric Vehicle Based on Master-slave Strategy
下载PDF
导出
摘要 双轮直驱式电动汽车采用感应轮毂电机驱动,通过对轮毂电机进行精确的同速和差速控制,取代传统汽车的机械差速器和传动装置。采用基于Ackerman转向模型的虚拟主从控制策略,轮毂电机均采用直接转矩控制(DTC),实现高动态牵引。基于系统的稳定性分析,用Matlab/Simulink软件对系统进行了仿真,结果表明,该方法在两轮毂电机存在负载转矩差异的情况下,可获得良好的稳态跟踪精度和较小的动态积分误差。 Two-wheeled direct-drive electric vehicle is driven by induction in-wheel motor, which can precisely control the in-wheel motor with the same and differential speed and take place of the mechanical differential and transmission device of traditional vehicles. High dynamic traction is realized, which is based on virtual master-slave control strategy of Ackerman steering model and direct torque control of in-wheel motor. The system has been simulated in the Matlab/Simulink via its stability analysis. The result shows that when the load torque is different between two in-wheel motors, the steady tracking accuracy is good, and its dynmnic integral error is small.
出处 《大功率变流技术》 2010年第5期45-48,58,共5页 HIGH POWER CONVERTER TECHNOLOGY
基金 辽宁省自然科学基金资助项目(20092052)
关键词 电动汽车 轮毂电机 电子差速 直接转矩控制 electric vehicle in-wheel motor electronic differential direct torque control
  • 相关文献

参考文献10

  • 1Massimo C,Lorenzo F,Antonella F,et al.Vehicle Yaw Control via Second-Order Sliding-Mode Technique[J].IEEE Transactions on Industrial Electronics,2008,55(11):3908-3916.
  • 2余卓平,姜炜,张立军.四轮轮毂电机驱动电动汽车扭矩分配控制[J].同济大学学报(自然科学版),2008,36(8):1115-1119. 被引量:71
  • 3Cong Geng,Toshiyuki U,Yoichi H.Body slip angle estimation and control for electric vehicle with in-wheel motors[C]//The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON),Talbei,2007:351-355.
  • 4Yang Yee-Pien,Lo Chun-Pin.Current distribution control of dual directly driven wheel motors for electric vehicles[J].Control Engineering Practice,2008(16):1285-1292.
  • 5Zhao Y E,Zhang J W,Guan X Q.Modeling and Simulation of Electronic Differential System for an Electric Vehicle with Two-Motor-Wheel Drive[J].IEEE International Conference,2009 (10):1209-1214.
  • 6Toshiyuki Uchida,Shin-ichiro Sakai,Yoichi Hori.Vehicle Stability Improvement Based on MFC Independently Installed on 4 Wheels-Basic Experiments using "UOT Electric Miarch 1 "[C]// IEEE International Symposium on Industrial Electronics,Osaka,Japan:2002:582-587.
  • 7Nobuyoshi Mutoh,Yuki Nakano.Dynamic Characteristic Analyses of the Front-and Rear-Wheel Independent Drive Type Electric Vehicle (FRID EV) When the Drive System Failed during Running under Various Road Conditions[C]//Vehicle power and Propulsion conference.2009:1162-1169.
  • 8宋明国.轻型汽车线控转向技术的研究[D].长春:吉林大学,2008.
  • 9Mtuoh N,Takahashi Y,Tomita Y.Failsafe Drive Performance of FRID Electric Vehicles With the Structure Driven by the Front and Rear Wheels Independently[J].IEEE Transactions on Industrial Electronics,2008,55(6):2306-2315.
  • 10Francisco J,Perez-Pinal,Ilse Cervantes.Stability of Electric Differential for Traction Applications[C]//Vehicle Power and Propulsion Conference,2007,VPPC 2007,IEEE,Arlington,TX,2007:771-776.

二级参考文献10

  • 1余卓平,赵治国,陈慧.主动前轮转向对车辆操纵稳定性能的影响[J].中国机械工程,2005,16(7):652-657. 被引量:33
  • 2杨恩泉,高金源.先进战斗机控制分配方法研究进展[J].飞行力学,2005,23(3):1-4. 被引量:33
  • 3Sato H, Kawai H, Isikawa M, et al. Development of four wheel steering system using yaw rate feedback control [R]. Nashville: SALE, 1991.
  • 4Tahami F, Kazemi R, Farhanghi S. A novel driver assist stability system for all-wheel-drive electric vehicles [J ]. IEEE Transactions on Vehicular Technology, 2003,52 (3) : 683.
  • 5Iksshima Y,Sawase K. A study on the effects of the active yaw moment control[ R]. Detroit: SAE, 1995.
  • 6Hori Y. Future vehicle driven by electricity and control - research on four- wheel-motored "UOT Electric March II" [ J ]. IEEE Transactions on Industrial Electronics, 2004,51 (2) : 954.
  • 7Tahami F, Farhangi S, Kazemi R. A fuzzy logic direct yawmoment control system for all-wheel-drive electric[J]. Vehicles System Dynamics, 2004,41 (3) : 203.
  • 8Shino M, Nagai M. Yaw moment control of electric vehicle for improving handling and stability[J]. JSAE Review, 2001,22: 473.
  • 9Mokhirnar O, Abe M. Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control[J]. Journal of Dynamics Systems, Measurement, and Control, 2004, 126:753.
  • 10Fredriksson J,Andreasson J, Laine J. Wheel force distribution for improved handling in a hybrid electric vehicle using nonlinear control[ J ]. Decision and Control, 2004,4: 4081.

共引文献70

同被引文献12

  • 1Massimo C, Lorenzo F, Antonella F. Vehicle Yaw Control via Second- Order Sliding-Mode Technique[J]. IEEE Transactions on Industrial Electronics,2008,55(11) : 3908-3916.
  • 2Peters S C, lagnemma K. Stability measurement of high-speed vehicles [J]. Vehicle System Dynamics, 2009,47(6) : 701-720.
  • 3Farzad Tahami, Shahrokh Farhanghi. A novel driver assist stability system for all-wheel-drive electric vehicles[J]. IEEE Transactions on vehicular technology,2003,52(3) : 683-687.
  • 4Shino Motoki,Miyamoto Naoya,Wang YuQing, et al. Traction control of electric vehicles considering vehicle stability[C]//The 6th International Workshop on Advanced Motion Control. Nagoya. 2000: 311-316.
  • 5丁惜瀛.无刷双馈电机牵引双轮驱动电动汽车差速与操纵稳定性控制策略研究[D].沈阳:沈阳工业大学,2010:44-46.
  • 6李文超.基于STM32的自动行驶模型车的设计[D].河北工业大学2014
  • 7孔祥宣.自主式双轮动态平衡移动机器人的控制系统研究[D].上海交通大学2007
  • 8余卓平,姜炜,张立军.四轮轮毂电机驱动电动汽车扭矩分配控制[J].同济大学学报(自然科学版),2008,36(8):1115-1119. 被引量:71
  • 9陈士安,邱峰,何仁.2种制造/安装偏差对高速车辆方向稳定性的影响[J].江苏大学学报(自然科学版),2011,32(1):32-37. 被引量:2
  • 10丁惜瀛,郭庆鼎,王健.基于二阶滑模的电动汽车感应电动机速度辨识[J].沈阳工业大学学报,2011,33(1):20-24. 被引量:4

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部