期刊文献+

凹半监督支持向量机及其应用

Application of concave semi-supervised support vector machines
下载PDF
导出
摘要 在训练集不足的情况下,SVM算法有待改进,以提高其评价的准确性。采用凹半监督支持向量机,利用少量标注样本和大量未标注样本进行机器学习,提高了模型预测的精度。 In case of lack of sufficient training set,SVM algorithm is expected to improve its accuracy.The concave semisupervised support vector machines is adopted and the little labeled sample and lots of labeled samples are utilized for machine learning.Accuracy of the model is improved by this method.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第28期132-134,共3页 Computer Engineering and Applications
基金 广东省自然科学基金面上项目(No.8151063101000040) 广东高校优秀青年创新人才培育项目(No(.2008)342号) 广东省自然科学基金博士启动项目(No.9451063101002213)
关键词 凹半监督支持向量机 机器学习 未标注样本 concave semi-supervised support vector machines machine learning unlabeled samples
  • 相关文献

参考文献8

  • 1Szummer M, Jaakkola T, Poggio T.Learning from partially labeled data[Z/OL].Artificial Intelligence Laboratory and the Center for Biological and Computational Learning, Massachusetts Institute of Technology Cambridge, Massachusetts 02139.http ://www.ai.mit.edu.
  • 2鲁珂,赵继东,叶娅兰,曾家智.一种用于图像检索的新型半监督学习算法[J].电子科技大学学报,2005,34(5):669-671. 被引量:9
  • 3Bennett K P, Demiriz A.Semi-supervised support vector machines[C]//Kearns M S, Solla S A,Cohn D A.Advances in Neural Information Processing System-10.Cambridge : MIT Press, 1998.
  • 4Mangasarian O L.Solution of general linear complementarity problem via nondifferentiable concave minimization[J].Acta Mathematica Vienamica, 1997,22( 1 ): 199-205.
  • 5杨丽明,党兰芬.半监督支持向量机及其在县域可持续发展综合实力评价中的应用[J].数学的实践与认识,2005,35(6):17-21. 被引量:3
  • 6Bezdek J C.A convergence theorem for the fuzzy ISODATA clustering algorithm[J].IEEE Trans PAMI, 1980,1 (2) : 1-8.
  • 7Bezdek J C, Hathaway R J,Convergence and theory for fuzzy C-means clustering: counter examples and repairs[J].IEEE Trans PAMI,1987,17(5) :871-877.
  • 8Bezdek J C, Hathaway R J.Recent convergence results for the fuzzy clustering algorithm[J].J Classification,1988,5(2):237-247.

二级参考文献9

  • 1Glenn Fung, Mangasarian O L. Semi-Supervised Support Vector Machines for Unlabeled Data Classification[M].Optimization Methods and Software, 2001.
  • 2Bennett K P, Demiriz A. Semi-Supervised Support Vector Machines[M]. In M S Kearns, S A Solla, and D A Cohn, editors, Advances in Neural Information Processing System-10: 368-374, MIT Press, Cambridge, 1998.
  • 3Bradley P S, Mangasarian O L, Street W N. Clustering Via Concave Minimization[M]. 1996.
  • 4Mangasarian O L. Solution of general linear complementarity problem via nondifferentiable concave minimization[J]. Acta Mathematica Vienamica, 1997, 22(1): 199-205.
  • 5Mangasarian O L. Machine Learning via Polyhedral Concave Minimization[M]. 1996.
  • 6He Xiaofei, Oliver King, Ma Wenying, et al. Learning a semantic space from user's relevance feedback for image retrieval[J]. IEEE Trans. on Circuit and Systems for Video Technology, 2003, 13(1):39-48
  • 7Vapnik V. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995
  • 8Thorsten J. Transductive inference for text classification using support vector machines[C]. 16th International Conference on Machine Learning, San Francisco, USA, 1999
  • 9He Xiaofei, Partha Niyogi. Locality preserving projections[C]. Advances in Neural Information Processing Systems,Vancouver, Canada, 2003

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部