摘要
给出了一个基于音节混淆网络的语音文档内容检索系统,提出了一种基于两阶段解码的查询自动扩展方法,首先通过Viterbi解码算法在混淆音节网格上计算混淆音节的似然得分,然后利用A*解码算法从音节格上产生易混淆的扩展项,扩展项由其置信得分与阈值的比较自动产生。实验结果显示该方法能够有效提高系统的检出率。
A syllable confusion network based spoken document content retrieval system is presented.A two-stage decoding based query automatic expansion method is proposed.It is achieved by first using a modified Viterbi decoder to calculate confusion syllable likehihood score in confusable syllable lattice,and then running A* search algorithm to generate mostly confusable phrases from lattice.The expansion terms are automaticly generated by its confidence score.Experimental results show that the proposed method can effectively improve term detection rate.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第28期138-140,145,共4页
Computer Engineering and Applications
基金
国家自然科学基金No.60705019
南昌航空大学研究生教改基金
南昌航空大学教改基金
南昌航空大学人才基金(No.EA200904175)~~
关键词
关键词识别
混淆网络
查询扩展
音节相似度
keyword recognition
confusion network
query expansion
syllable similarity