期刊文献+

基于小波变换C_0复杂度的语音端点检测方法 被引量:3

Voice activity detection method based on wavelet transform C_0 complexity
下载PDF
导出
摘要 对传统的C0复杂度语音端点检测方法改进,提出一种基于小波变换的C0复杂度(WC0)方法,其特征门限估计采用模糊C均值聚类算法和贝叶斯信息准则算法,并采用双门限法进行语音端点检测。在TIMIT连续语音库上的实验表明,在低信噪比环境下,WC0法的检测性能明显优于基于传统的C0复杂度法,特别是在车辆噪声和车内噪声环境下,WC0法表现出更好的检测性能。 This paper proposes a Voice Activity Detection(VAD) method based on wavelet transform Co complexity(WC0), which improves the traditional C0 complexity,using fuzzy C means clustering algorithm and Bayesian information criterion algorithm to estimate the thresholds of the WCo characteristic,and using dual threshold method for VAD.Experiments on the TIMIT continuous speech database show that at low SNR environments, WC0 method is superior to C0 method.Especially in the vehicle noise and vehicle interior noise environments,WC0 method shows better detection performance.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第29期134-136,195,共4页 Computer Engineering and Applications
基金 湖南省自然科学基金重点项目(No.10JJ2046) 湖南省科技计划项目(No.05FJ3046)~~
关键词 语音端点检测 C0复杂度 小波变换 模糊C均值聚类算法 贝叶斯信息准则算法 voice activity detection C0 complexity wavelet transform fuzzy C means clustering algorithm Bayesian information criterion algorithm
  • 相关文献

参考文献8

二级参考文献21

  • 1徐京华,吴祥宝.以复杂度测度刻划人脑皮层上的信息传输[J].中国科学(B辑),1994,24(1):57-62. 被引量:21
  • 2武传艳,范影乐,庞全.一种改进的基于谱熵的语音端点检测技术[J].计算机工程与应用,2006,42(1):56-57. 被引量:5
  • 3贾川 张健 陈振标.噪声环境下的端点检测算法研究[A]..第六届全国人机语音通信会议[C].,2001.441-445.
  • 4Christoph Bandt, Bernd Pompe.Permutation Entropy-a Natural Complexity Measure for Time Series [J]. Phys Rev Lett,2002, 88(17):174102.
  • 5Thompason C, Mulpor A, Mehta V. Transition to Chaos in Acoustically Driven Flow[J]. J Acoust Soc Am, 1991, 90(4) :2097-2103.
  • 6Lempel A, Ziv J. On the Complexity of Finite Sequences[J].IEEE Trans on Information Theory, 1976, 22:75-88.
  • 7Janume P, Dosal M. Robust Speech Activity Detection Using LDA Applied to FF Parameters[C]. In:Proceeding of ICASSP 2005, 1:557-572.
  • 8Junqua J C.Robustness and cooperative multimodel manmachine communication applications[A].Proc Second Venaco Workshop and ESCA ETRW[C].1991.
  • 9LI Q,ZHENG J,ZHOU Q,et al.A robust,real-time endpoint detector with energy normalization for ASR in adverse environments[A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Salt Lake City:2001,1:574-577.
  • 10Shin W H,Lee B S,Lee Y K,et al.Speech/ nonspeech classification using multiple features for robust endpoint detection[A].IEEE International Conference on Acoustics,Speech and Signal Processing.Istambul[C].Turkey:2000,3:1399-1402.

共引文献33

同被引文献29

  • 1蔡志杰,孙洁.改进的C_0复杂度及其应用[J].复旦学报(自然科学版),2008,47(6):791-796. 被引量:11
  • 2赵彦平,赵晓晖.用于语音端点检测的鲁棒性特征提取新方法[J].吉林大学学报(工学版),2006,36(1):77-81. 被引量:6
  • 3范影乐,武传艳,李轶,庞全.基于C_0复杂度的语音端点检测技术研究[J].传感技术学报,2006,19(3):750-753. 被引量:7
  • 4雷雄国,曾以成,李凌.基于近似熵的语音端点检测[J].声学技术,2007,26(1):121-125. 被引量:11
  • 5Koichi Yamamoto, Firas Jabloun, Klaus Reinhard, et al. Robust endpoint detection for speech recognition based on discriminative feature extraction[C]// IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006.
  • 6Lu X, Unoki M, Isotani R,et al. Voice activity detection in a regularized reproducing kernel Hilbert space [C]//INTERSPEECH, Makuhari, Japan, 2010.
  • 7Chang J K, Kim N S, Mitra S K. Voice activity detection based on multiple statistical models[J]. IEEE Trans Signal Process, 2006, 54 (6): 1965- 1976.
  • 8Hyeopwoo Lee, Dongsuk Yook. Space-time voice activity detection[J]. IEEE Trans Consumer Electronics, 2009,55(3) :1471-1476.
  • 9Li K,Swamy M N S, Ahmad M O. An improved voice activity detection using higher order statistics[J]. IEEE Trans Speech and Audio Processing, 2005, 13(5): 965-974.
  • 10Cho Namgook, Kim Eun-Kyoung. Enhanced voice activity detection using acoustic event detection and classification[J]. IEEE Trans Consumer Electronics, 2011, 57(1):196-202.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部