期刊文献+

结合SVM的交互式遗传算法在入侵检测中的应用 被引量:4

Application of improved interactive genetic algorithm incorporated with SVM in intrusion detection
下载PDF
导出
摘要 针对入侵检测中存在样本少、特征多、难于将实际经验与现有算法有机结合的问题,将交互式遗传算法应用到入侵检测技术中,并结合SVM的特点,设计出改进后的分类识别算法。实验证明,将SVM与交互式遗传算法相结合应用于入侵检测领域中,算法有效、可行,而且能获得很好的检测率。 For the problems with few samples, a lot of characteristics and difficult to incorporate the practical experience and the existing algorithm,this paper applies the interactive genetic algorithm into intrusion detection technology,incorporates the characteristic of SVM, then designs the improved classified recognition algorithm.The experiment result proves that the improved interactive genetic algorithm incorporated with SVM in intrusion detection domain is effective,feasible,and can obtain very good detection rate.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第29期200-202,210,共4页 Computer Engineering and Applications
基金 高等学校科技创新工程重大项目培育资金项目
关键词 交互式遗传算法 支持向量机 入侵检测 Interactive Genetic Algorithm(IGA) Support Vector Machine (SVM) intrusion detection
  • 相关文献

参考文献9

  • 1Lane T, Carla E B.An empirical study of two approaches to sequence learning for anomaly detection[J].Machine Learning, 2003,51(1):73-107.
  • 2Verwoerd T,Hunt P.Intrusion detection techniques and approaches[J]. Computer Communications, 2002,25 (15) : 1356-1365.
  • 3Sung A H, Mukkamala S.Identifying important features for intrusion detection using support vector machines and neural networks[C]//Proceedings of the Symposiumon Applications and the Intemet.Dublin:Trinity College Dublin Press,2003:209-216.
  • 4Liu R T.A fast pattern-match engine for network processorbased network intrusion detection system[C]//Proeeedings of the International Conference on Information Technology: Coding and Computering,LasVegas,Nevada,USA:2004:97-101.
  • 5Rena H P.Markov chains in network intrusion detection[C]//Proceedings of the IEEE Workshop on Information Assurance United States Military Academy, West Point, Florianopolis, Brazil, 2004: 10-11.
  • 6Takagi H,Noda T,Cho S B.The psychological space of common media impressions held in a media database retrieval system[C]//IEEE SMC'99 Conference Proceedings, Tokyo, Japan, 1999: 969-973.
  • 7张昊,陶然,李志勇,杜华.动态剪枝二叉树多类SVM在入侵检测中的研究[J].计算机工程与应用,2009,45(2):13-15. 被引量:4
  • 8苏璞睿,李德全,冯登国.基于基因规划的主机异常入侵检测模型(英文)[J].软件学报,2003,14(6):1120-1126. 被引量:19
  • 9王上飞,王胜惠,王煦法.结合SVM的交互式遗传算法及其应用[J].数据采集与处理,2003,18(4):429-433. 被引量:14

二级参考文献14

  • 1Kim D,Nguyen H N,Ohn S Y,et al.Fusious of GA and SVM for anomaly detection in intrusion detection system[C]//Lecture Notes in Computer Science 3498:Advanced in Neural Networks.[S.l.]:Springer-Verlng,2005:415-420.
  • 2Sungmon C,Sang H O,Seu-Young L.Support vector machines with binary tree architecture for multi-class classification[J].Neurul In-formation Processing Letters and Reviews,2004,2(3):47-51.
  • 3Burges J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 4Vapnik V.Statistical learning theory[M].New York:Springer Verlng,1998.
  • 5Ulrich K.Pairwise classification and support vector machines[C]// Advances in Kernel Methods Support Vector Learning.Cambridge,MA:MIT Press,1998:255-268.
  • 6Platt J C,Cristianini N,Shawe-Taylor J.Large margin DAG's for multi-class classificatiou[C]//Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2000,12:547-553.
  • 7Yun QX, Huang GQ, Wang ZQ. Genetic Algorithm and Genetic Programming. Beijing: Publishing House of Metallurgy Industry,1997 (in Chinese).
  • 8Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA. A sense of self for Unix process. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 1996.
  • 9Hofmeyr SA, Forrest S. Architecture for an artificial immune system. Evolutionary Computation Journal, 2000,8(4):443-473.
  • 10Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Proceedings of the1999 IEEE Symposium on Security and Privacy. 1999.

共引文献34

同被引文献36

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部