期刊文献+

SD振子的非线性动力学特征研究 被引量:3

Investigations of Nonlinear Dynamics for SD Oscillator
下载PDF
导出
摘要 介绍了SD振子的非线性动力学行为。该振子是一个具有强非线性特征的振动系统,其动力学行为决定于一个光滑参数α的连续变化,当参数α>0时,系统为光滑的,而当参数α=0时,系统为不连续的。SD振子提供了一个从光滑动力学行为向不连续动力学行为光滑转迁的范例。当系统为光滑时,表现出与Duffing系统类似的标准双阱动力学行为;当系统表现为不连续时,除表现为非标准的双阱动力学行为外,同时具有如类鞍点和类同宿轨道等非标准动力学行为。还给出一个刚性耦合的SD振子,该振子具有单阱、双阱、三阱动力学特征及随参数变化由光滑动力学行为向不连续动力学行为的转迁特性。 In this paper, we introduce the nonlinear dynamics of the recently proposed SD oscillator, which behaves both smooth and discontinuous dynamics with strong nonlinearity. The dynamics of this oscillator depends on a smooth varying parameter α. If a 〉 0 the system is smooth behaving standard dynamics with double well potential while when α= 0 it is discontinuous admitting a nonstandard dynamics with homoclinic-like double well potential and a saddle-like singularity. We also propose a rig coupled SD oscillator which exhibits both standard and nonstandard nonlinear behavior with single, double and triple well potential and the transition as parameter changes.
出处 《石家庄铁道大学学报(自然科学版)》 2010年第2期32-37,共6页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金 国家自然科学基金(10872136及10932006) 河北省自然科学基金(08M003) 河北省教育厅基金(2009470)
关键词 SD振子 SD吸引子 类鞍点 类同宿轨道 SD oscillator SD attractor saddle-like equilibrium homoclinic-like orbit
  • 相关文献

参考文献12

  • 1Ruilan Tian,Qingjie Cao,Shaopu Yang.The codimension-two bifurcation for the recent proposed SD oscillator[J]. Nonlinear Dynamics . 2010 (1-2)
  • 2Dietterich T G.Ensemble methods in Machine Learning. First International Workshop on Multiple Classifier systems . 2000
  • 3Golubitsky,M.,Schaeffer,D.,Stewart,I. Singularities and Groups in Bifurcation Theory . 1988
  • 4Filippov A F.Differential equations with discontinuous right-hand sides. . 1988
  • 5Shaw S W,Holmes P J.A periodically forced piecewise linear oscillator. Journal of Sound and Vibration . 1983
  • 6Nordmark AB.Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of Sound and Vibration . 1991
  • 7Thompson J M T,Hunt G W.A General Theory of Elastic Stability. . 1973
  • 8Guckenheimer J,Holmes PJ.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. . 1983
  • 9Guckenheimer J,Holmes PJ.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. . 1983
  • 10Wiggins S.Global Bifurcations and Chaos-Analytical Methods. Journal of Applied Mathematics . 1988

同被引文献27

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部