期刊文献+

一类非等截面杆的纵向自由振动 被引量:5

Free Axial Vibrations of a Non-uniform Rod
下载PDF
导出
摘要 研究一类变截面杆,其横截面积呈指数函数变化。经适当变换后,杆的纵向自由振动方程转换为退化的超几何方程,其解可以用Kummer函数来表示。得到了三种简单边界条件下的频率方程和振型函数。频率方程一般是超越方程,需要数值求解其固有频率。在特殊情形下,可以求得各阶固有频率。 In this paper, the free axial vibrations of a rod with variable cross section area of the cross section of the rod varies exponentially along the axes of the rod. In terms are investigated. The of the proposed transformation, the governing equations of the free vibration are transformed as degenerated hyper-geometry equations, the solutions of which can be expressed by Kummer functions. The frequency equations and mode functions are obtained under three kinds of boundary conditions. Since the frequency equations are transcendental equations, the natural frequencies are solved with a numeric method. For some special cases, the explicit expressions of natural frequencies can be obtained.
出处 《石家庄铁道大学学报(自然科学版)》 2010年第2期59-63,共5页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金 国家自然科学基金资助(10602039)
关键词 变截面杆 纵向振动 自由振动 Kummer函数 超几何方程 rod with variable cross section axial vibration free vibrations Kummer functions hyper-geometry equation
  • 相关文献

同被引文献35

  • 1张瑞平,李会侠,穆静.可展开为幂级数的变截面弹性直杆的纵向自由振动分析[J].机械科学与技术,2000,19(z1):61-62. 被引量:3
  • 2Shuqi Guo,~(1,a) Zhi Zhang,~2 and Shaopu Yang~3 1)Department of Mechanics,Shijiazhuang Tiedao University,Shijiazhuang 050043,China. 2)School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China 3)School of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China.Longitudinal waves in one dimensional non-uniform waveguides[J].Theoretical & Applied Mechanics Letters,2011,1(2):33-36. 被引量:3
  • 3侯祥林,范炜,贾连光.变截面压杆临界载荷的迭代算法[J].哈尔滨工业大学学报,2011,43(S1):237-240. 被引量:14
  • 4官印生,周新年,郑丽凤,张正雄,吴南海,巫志龙.柔性吊桥设计理论及其应用研究(Ⅶ)——基于VB的柔性吊桥悬索设计系统[J].东北林业大学学报,2006,34(2):73-75. 被引量:4
  • 5铁摩辛柯.弹性稳定理论[M].北京:科学出版社,1958.138-139.
  • 6Malashin A A. Problems of boundary control over the transverse-longitudinal vibrations of strings[J]. Doklady Physics, 2011, 56(9): 502-505.
  • 7Fedotov I A, Polyanin A D, Shatalov Y M, et al. Longitudinal vibrations of a Rayleigh-Bishop rod[J]. Doklady Physics, 2010, 55(12): 609-614.
  • 8Kuleshov A A. Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod and for the equation of transverse vibrations of a heterogeneous string consisting of two segments with different densities and elasticities[J]. Doklady Mathematics, 2012, 85(1): 98-101.
  • 9Kuleshov A A. Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod with a free or fixed right end consisting of two segments with different densities and elasticities[J]. Doklady Mathematics, 2012, 85(1): 80-82.
  • 10II'in V A. Longitudinal vibrations of a rod consisting of two segments with different densities and elasticity coefficients but with identical travel times on each segment[J]. Doklady Mathematics, 2009, 80(3): 910-913.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部