期刊文献+

带约束动力学辛算法的符号计算 被引量:2

THE SYMBOLIC COMPUTATION OF SYMPLECTIC ALGORITHM IN CONSTRAINED DYNAMICS
原文传递
导出
摘要 首先对带约束动力学中的辛算法作了改进,利用吴消元法求解多项式类型Euler-Lagrange方程.在辛算法的基础上,根据线性方程组理论和相容条件提出了一个求解约束的新算法.新算法的推导过程比辛算法严格,而且计算也比辛算法简单,并且多项式类型的Euler-Lagrange仍可以用吴消元法求解.另外,对于某些非多项式类型的Euler-Lagrange方程,可以先化为多项式类型,再用吴消元法求解.利用符号计算软件,上述算法都可以在计算机上实现. In this paper,firstly,the Symplectic algorithm in constrained dynamics is improved; the Euler-Lagrange equations are solved by Wu eliminate method.Based on Symplectic algorithm,according to the theory of linear equation system and consistent conditions,a new algorithm is presented.The deduction of new algorithm is more rigorous than the Symplectic algorithm,the process of computation is simpler the Symplectic algorithm,and the polynomial type Euler-Lagrange equation can be also solved with Wu eliminate method.In addition,some non-polynomial type Euler-Lagrange equation can be solved with Wu eliminate.By using the symbolic software,the above algorithms can be executed in computers.
出处 《系统科学与数学》 CSCD 北大核心 2010年第9期1175-1184,共10页 Journal of Systems Science and Mathematical Sciences
基金 中国劳动关系学院院级课题孤立子中的符号计算研究(10YYA034)资助
关键词 约束 特征列 辛矩阵 EULER-LAGRANGE方程 Constraints characteristic set symplectic matrix Euler-Lagrange equation
  • 相关文献

参考文献4

二级参考文献33

  • 1缪炎刚.一种自对偶理论的规范不变形式及其量子化[J].物理学报,1993,42(4):536-543. 被引量:2
  • 2李子平.奇异拉氏量系统的整体量子正则对称性质[J].物理学报,1996,45(10):1601-1608. 被引量:9
  • 3Werner M Seiler and Robin W Tucker. Involution and constrained dynamics Ⅰ: The dirac approach. Journal of Physics A-Mathematical and General, 1995, 28: 4431-4451.
  • 4Valdimir P Gerdt and Soso A Gogilidze. Constrained Hamiltonian Systems and Groebner Bases. Computer Algebra in Scientific Computing(ed. by Ganzha V G, Mayr E W and Vorozhtsov E V), Springer-Verlag, Berlin, 1999, 139-146.
  • 5Werner M Seiler and Robin W Tucker. Involution and constrained dynamics Ⅱ: The faddeev-jackiw approach. Journal of Physics A-Mathematical and General, 1995, 28: 7315-7331.
  • 6Dirac P A M. Generalized Hamiltonian Dynamics. Canadian Journal of Mathematics, 1950, 2, 129-148.
  • 7Sundermeyer K. Constrained Dynamics. Lecture Notes in Physics 169. Springer-Verlag, New York, 1982.
  • 8Dirac P A M. Generalized Hamiltonian Dynamics. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1958, 246(1246): 326-332.
  • 9Shanmugadhasan S. Generalized canonical formalism for degenerate dynamical systems. Proc. Camb. Phil. Soc., 1963, 59: 743-757.
  • 10LiAM,Jiang J H and Li Z P2003 Chin,Phys.12467

共引文献2

同被引文献15

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部