期刊文献+

具有位相型随机补货提前期的PH退化可修系统及其最优更换策略 被引量:3

PH DETERIORATING REPAIRABLE SYSTEM WITH PHASE-TYPE STOCHASTIC LEAD TIME AND ITS OPTIMAL RELACEMENT POLICY
原文传递
导出
摘要 将几何过程与PH分布相结合,讨论一个带有位相型随机补货提前期的PH退化可修系统.通过建立最小生成元Q矩阵,获得了系统在稳态情形下的状态概率分布向量及其数值解.根据上述研究结果同时也得到了系统的几个重要可靠性指标.进一步地,还考虑了基于部件故障次数的订购策略和更换策略,导出系统单位时间平均运行成本的解析表达式并给出一个确定最优N策略的数值算例. Combining PH distribution with geometric process,a PH deteriorating repairable system with phase-type stochastic lead time is investigated.By using the infinitesimal generator matrix Q,the steady state probability distribution vectors of the system state and their numerical solutions are obtained.Then,according to the above research results,some important reliability indices of the system are given.Furthermore,an ordering policy and a replacement policy based on the number of failures of the component are considered.The explicit expression for the average cost rate of the system is derived and a numerical example for determining the optimal N policy is given.
出处 《系统科学与数学》 CSCD 北大核心 2010年第9期1222-1235,共14页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金重点项目(70932005) 国家自然科学基金(70871084) 教育部高校博士点专项研究基金(200806360001) 四川省教育厅自然科学基金(08ZC028)资助
关键词 退化可修系统 随机补货提前期 PH分布 几何过程 更换策略 Deteriorating repairable system stochastic lead time PH distribution geometric process replacement policy
  • 相关文献

参考文献15

  • 1Lam Y. A note on the optimal replacement problem. Advances in Applied Probability, 1988, 20(2): 479-482.
  • 2Lam Y. Calculating the rate of occurrence of failures for continuous time Markov chains with application to a two component parallel system. Journal of the Operational Research Soceity, 1995, 46(4): 528-536.
  • 3Lam Y, Zhang Y L. Analysis of a two-component series system with a geometric process model. Naval Logistic Research, 1996, 43(4): 491-502.
  • 4Lam Y, Zhang Y L. Analysis of a parallel system with different units. Acta Mathematicae Applicatae Sinica, 1996, 12(4): 408- 417.
  • 5Zhang Y L, Wang G J. A deteriorating cold standby repairable system with priority in use. European Journal of Operational Research, 2007, 183(1): 278-295.
  • 6Zhang Y L. A geometrical process repair model for a repairable system with delayed repair. Computers and Mathematics with Applications, 2008, 55(8): 1629-1643.
  • 7Neuts M F, Perez-Ocon R, Torres-Castro I. Repairable models with operating and repair times governed by phase type distributions. Advances in Applied Probability, 2000, 34(2): 468-479.
  • 8Perez-Ocon R, Montoro-Cazorla D. Transient analysis of a repairable system, using phase-type distributions and geometric processes. IEEE Transanctions on Reliability, 2004, 53(2): 185-192.
  • 9Perez-Ocon R, Montoro-Cazorla D. A multiple system governed by a quasi-birth-and-death process. Reliability Engineering and System Safety, 2004, 84(2): 187-196.
  • 10Perez-Ocon R, Montoro-Cazorla D. A multiple warm standby system with operational and repair times following phase-type distributions. European Journal of Operational Research, 2006, 169(1): 178-188.

同被引文献32

  • 1BARLOW R E, HUNTER L C. Optimum preventive maintenance policy[J]. Operations Research, 1960, 8( 1 ) :90-100.
  • 2BROWN M, PROSCHAN F. Imperfect repair[J]. Journal of Applied Probability, 1983, 20 (4) :851-859.
  • 3LAM Y. A note on the optimal replacement problem[J]. Advances in Applied Probability, 1988, 20(2) :479-482.
  • 4LAM Y. Geometric processes and replacement problem[J]. Acta Mathematicae Applicatae Sinica, 1988, 4 (4) :366-377.
  • 5ZHANG Yuanlin. A bivariate optimal replacement policy for a repairable system [ J ]. Journal of Applied Probability, 1994, 31 (4) :1123-1127.
  • 6ZHANG Yuanlin, YAM R C M, ZUO M J. Optimal replacement policy for a multistate repairable system [J]. Journal of theOperational Research Society, 2002, 53 (3):336-341.
  • 7ZHANG Yuanlin, YAM R C M, ZUO M J. A bivariate optimal replacement policy for a multistate repairable system [ J ]. Re- liability Engineering and System Safety, 2007, 92 (4) :35-42.
  • 8WANG Guanjun, ZHANG Yuanlin. A bivariate optimal replacement policy for a cold standby repairable system with preventive repair[J]. Applied Mathematics and Computation, 2011, 218( 1 ) :3158-3165.
  • 9CHENG Guoqing, LI Ling. Two different general monotone process models for a deteriorating system and its optimization [ J ]. International Journal of Systems Science, 2011,42 ( 1 ) : 57-62.
  • 10ROSS S M. Stochastic processes[M]. 2nd ed. New York: Wiley, 1996.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部