期刊文献+

Toeplitz-Bezout矩阵的若干性质 被引量:1

SOME PROPERTIES OF TOEPLITZ-BEZOUT MATRICES
原文传递
导出
摘要 从定义出发,利用矩阵生成函数的方法来研究Toeplitz-Bezout若干基本性质,同时利用极限的思想将其对角约化. Some elementary properties of Toeplitz-Bezout matrices are studied by the method of generating functions.Then the idea of function limit is used to diagonalize this kind of matrices.
出处 《系统科学与数学》 CSCD 北大核心 2010年第9期1267-1274,共8页 Journal of Systems Science and Mathematical Sciences
基金 安徽省自然科学基金(090416230)资助项目
关键词 Hankel-Bezout矩阵 Toeplitz-Bezout矩阵 生成函数 VANDERMONDE矩阵 Hankel-Bezout matrix Toeplitz-Bezout matrix generating function Vander-monde matrix
  • 相关文献

参考文献12

  • 1Bezout E. Recherches sur le degre des equations resultants de L'evanouissement des inconnues, et sur les moyens qu'il convenient d'employer pour trouver ces equations. Mere. Acad. Roy. Sci. Paris, 1764, 18(3): 288-338.
  • 2Fujiwara M.Uber die algebraischen Gleichungen, deren Wiirzeln in einem Kreise oder in einer Halbebene liegen. Math. Z., 1926, 24:161 -169.
  • 3Heinig G, Rost K. Algebraic Methods for Toeplitz-Like Matrices and Operators: Operator Theory. Birkhauser, Basel, 1984.
  • 4Lancaster P, Tismenetsky M. The Theory of Matrices. Academic Press, Orlando, 1985.
  • 5Barnett S. Polynomials and Linear Control System. Marcel Dekker, New York, 1983.
  • 6Kailath T. Linear System. Prentice-Hall, Englewood Cliffs, NJ. 1980.
  • 7Anderson B D O, Jury E I. Generalized Bezout and Sylvester matrices in multivariable control. IEEE Trans. Automat. Control, 1976, 21:551- 556.
  • 8Barnett S, Lancaster P. Some properties of the Bezoutian for polynomial matrices. Linear and Multi. Algebra, 1980, 9:99 -111.
  • 9Chen G N, Yang Z H. Bezoutian representation via Vandermonde matrix. Linear Algebra Appl., 1993, 186: 37-44.
  • 10Maroulas J, Barnett S. Polynomials with respect to a general basis I: Theory. J. Math. Anal. Appl., 1979, 72:177- 194.

同被引文献6

  • 1Bezout E. Recherches sur le degree des equations result- ants de L ' moyens qu' il convenient d' des ineonnues, et sur les employer pour truver ces e- quations[ J]. Memoires Academie Royale des Sciences Paris, 1764, 18:288-338.
  • 2Kailath T. Linear System [ M ]. Prentiee-Hall, Engle- wood Cliffs, NJ, 1980.
  • 3Gover M J, Barnett. S. A generalized Bezoutian matrix [ J ]. Linear and Multilinear Algebra, 1990, 27:33-48.
  • 4Yang Z H. Polynomial Bezoutian matrix with respect to a general basis[ J]. Linear Algebra and its Applications, 2001, 331:165-179.
  • 5Barnett S. Polynomials and Linear Control Systems [ M ]. New York: MARCEL DEKKER, INC, 1983.
  • 6吴晓璇,吴华璋.关于Jacobson链基下的Bezout矩阵[J].合肥工业大学学报(自然科学版),2010,33(11):1740-1744. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部