期刊文献+

神经网络模型用于数值水质模型逼近的适用性及非敏感参数的欺骗效应 被引量:10

Neural networks for approximating numerical water quality models:Applicability and deceptive effects of insensitive parameters
原文传递
导出
摘要 水质模型被广泛应用于水环境管理和决策,但却面临着计算时间和模型应用效率等多方面的问题;利用函数映射和逼近等方法来建立水质模型的输入-输出响应关系,可有效减少计算成本并显著改善模型效率.水质模型的输入-输出响应函数关系有多种形式,本文以其中的2种为例,并分别基于2个水质模型(零维总磷模型、WASP/EUTRO5)的案例,分析和验证了神经网络模型在响应关系逼近中的适用性.案例的结果表明:神经网络函数可以有效地用于水质模型输入-输出响应关系的逼近;当网络规模超出阈值大小时,神经网络函数逼近的准确度和泛化度对网络规模不敏感.在案例研究的基础上,推导和讨论了在神经网络模型函数映射过程中所可能出现的非敏感参数的欺骗效应,以及可能由此导致的过度预测或过低预测问题;并建议在神经网络函数逼近中,应只包含水质模型的敏感参数,以防止降低神经网络模型的准确度. Water quality modeling (WQM) has long been used to support decision making for environmental management; however,in many cases,a water quality model requires significant computational time,which poses a limitation on using it to evaluate a large number of source management scenarios,analyze parameter uncertainty,and conduct inverse parameter estimation modeling. The efficiency of applying water quality models can be significantly improved by reducing the computational time through a functional mapping technique. A neural network (NN) based functional approximator was developed in this study to map the input-output response relationships of numerical water quality models. The applicability of the developed functional approximator is demonstrated through numerical examples of a total phosphorus (TP) model and WASP/EUTRO5. Particularly,the paper presents an analysis on the deceptive effect of insensitive model parameters in an NN functional mapping process. The study shows that a properly developed NN functional approximator can accurately approximate the input-output response relationship of a water quality model,and it is desired that only the sensitive parameters of a water quality models are included in the NN functional approximators to avoid degrading the NN model accuracy.
出处 《环境科学学报》 CAS CSCD 北大核心 2010年第10期1964-1970,共7页 Acta Scientiae Circumstantiae
基金 国家水体污染控制与治理科技重大专项(No.2008ZX07102-001)~~
关键词 水质模型 神经网络 欺骗效应 参数 water quality modeling neural network deceptive effects parameters
  • 相关文献

参考文献28

  • 1Alley W. 1986. Regression approximation for transport model constraint sets in combined simulation-optimization studies [ J ]. Water Resource Research, 22(4): 581--586.
  • 2Ambrose R B, Wool T A, Martin J L. 1993. WASPS, The Water Quality Analysis Simulation Program-Part A: Model Documentation [ R ]. Environmental Research Laboratory, Athens, Georgia. 77--110.
  • 3Bowen J P. 1982. Hypercubes [ J ]. Practical Computing, 5 (4) : 97--99.
  • 4Chapra S C. 1997. Surface Water Quality Modeling [ M]. New York: The McGraw-Hill Company, Inc. , USA.
  • 5陈柳,马广大.大气中SO_2浓度的小波分析及神经网络预测[J].环境科学学报,2006,26(9):1553-1558. 被引量:27
  • 6陈丁江,吕军,沈晔娜,金树权.非点源污染河流水质的人工神经网络模拟[J].水利学报,2007,38(12):1519-1525. 被引量:12
  • 7Chow M Y, Teeter J. 1997. Reduced-order functional link neural network for HAVC thermal system identification and modeling [ A ] Piscataway, N J: Proceeding of 1997 International Conference on Neural Networks [ C]. 5--9.
  • 8邓义祥,王斯栓,李子成,苏一兵.水质模型在东莞污染源负荷估算中的应用[J].环境科学学报,2009,29(11):2458-2464. 被引量:4
  • 9Flood I, Kartam N. 1994. Neural networks in civil engineering. Ⅱ: Systems and application [ J ]. Journal of Computing in Civil Engineering, 8(2) : 149--161.
  • 10Irish L B, Barrett M E, Malina J, et al. 1998. Use of regression models for analyzing highway storm-water loads [ J ]. Journal of Environmental Engineering, 124(10) : 987--993.

二级参考文献70

共引文献107

同被引文献145

引证文献10

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部