摘要
在时间推进法下使用可压不可压统一算法进行低马赫数不可压流动计算,可能会遭遇压力速度失耦这一不可压流动计算经典难题。现有的解决方法需要全场统一的经验常数,不能满意地解决这一问题。为此,本文在继承了现有方法中界面速度这一慨念的基础上,通过形式推广节点速度求解公式获得界面速度求解公式。求解界面速度公式中的压力梯度项采用计算得到,而其它项采用插值得到,从而得到新的时间推进法下的动量插值方法。这一方法不需要经验参数,数值算例表明其具有较好的抑制压力速度失耦现象的能力。
The calculation with the scheme for all-speed flows may suffer from the classical problem of the velocity-pressure decoupling for the low Mach number flows under the frame of time-marching algorithm. The existing method for this problem needs a global experiential constant that is obviously undesirable. In order to overcome this limit, under the concept of the interface velocity from the existing method, the equation solving the interface velocity is derived from the formal extension of the equation solving the velocity in nodes. Then, the time-marching momentum interpolation method is proposed to obtain the interface velocity by the calculation of the term of the pressure gradient and the interpolation of other terms in the equation. This method does not need experiential constant and shows good ability to suppress the velocity-pressure decoupling by the numerical experiment.
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2010年第10期1655-1658,共4页
Journal of Engineering Thermophysics
基金
国家自然科学基金资助项目(No.50806037)
国家重点基础研究发展计划资助(No.2007CB210105)
关键词
时间推进
动量插值
压力速度失耦
可压不可压统一算法
time-marching algorithm
the momentum interpolation method
the velocity-pressure decoupling
uniform algorithm for all-speed flows