期刊文献+

基于流形距离的半监督判别分析 被引量:22

Semi-Supervised Discriminant Analysis Based on Manifold Distance
下载PDF
导出
摘要 大量无类别标签的数据具有对分类有用的信息,有效地利用这些信息来提高分类精确度,是半监督分类研究的主要内容.提出了一种基于流形距离的半监督判别分析(semi-supervised discriminant analysis based on manifold distance,简称SSDA)算法,通过定义的流形距离,能够选择位于流形上的数据点的同类近邻点、异类近邻点以及全局近邻点,并依据流形距离定义数据点与其各近邻点之间的相似度,利用这种相似度度量构造算法的目标函数.通过在ORL,YALE人脸数据库上的实验表明,与现有算法相比,数据集通过该算法降维后,能够使基于距离的识别算法具有更高的分类精确度.同时,为了解决非线性降维问题,提出了Kernel SSDA,同样通过实验验证了算法的有效性. Rich unlabeled data contains valuable information, which is useful for classification. Using information efficiently to improve the accuracy of classification is the major purpose of semi-supervised learning. This paper proposes a kind of semi-supervised classification approach called Semi-Supervised Discriminant Analysis that is based on Manifold Distance, SSDA. The intra-class neighbors, the inter-class neighbors, and the total neighbors of a selected point can be determined by the proposed manifold distance. The similarity between these neighbors and the point can be defined based on the manifold distance. The object function is defined using the similarity. As the experiments operated on the database ORL and YALE show, compared with the existing algorithms, the proposed algorithm can improve the accuracy of classified algorithms based on distance. When dealing with nonlinear dimensionality reduction problem, the Kemel SSDA (namely, kernel semi-supervised discriminant analysis based on manifold distance) is proposed. Also, the experimental results show the efficiency of this algorithm.
作者 魏莱 王守觉
出处 《软件学报》 EI CSCD 北大核心 2010年第10期2445-2453,共9页 Journal of Software
关键词 主成分分析 线性判别分析 流形距离 半监督判别分析 principal component analysis linear discrimininat analysis manifold distance semi-supervised classfication
  • 相关文献

参考文献2

二级参考文献55

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4H. Sebastian Seung, Daniel D. Lee. The manifold ways of perception [J]. Science, 2000, 290(12): 2268-2269
  • 5Andrew Y. Ng, Michael I. Jordan, Yair Weiss. On spectral clustering: Analysis and an algorithm [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 849-856
  • 6J. Shawe-Taylor, N. Cristianini, J. Kandola. On the concentration of spectral properties [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 511-517
  • 7F. R. K. Chung. Spectral Graph Theory [M]. Fresno:American Mathematical Society. 1997
  • 8B. Scholkopf, A. Smola, K-R. Muller. Nonlinear component analysis as a kemel eigenvalue problem[J].Neural Computacation, 1998, 10(5): 1299-1319
  • 9T. Hastie, W. Stuetzle. Principal curves[J]. Journal of the American Statistical Association, 1989, 84(406) : 502-516
  • 10T. Cox, M. Cox. Multidimensional Scaling [M]. London:Chapman & Hall, 1994

共引文献135

同被引文献219

引证文献22

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部