期刊文献+

一个增量式判定树学习算法INDUCE 被引量:6

INDUCE: AN INCREMENTAL DECISION TREE ALGORITHM
下载PDF
导出
摘要 INDUCE算法采用自顶向下判定树归纳的学习方法,不仅具有健壮性好、效率高和正确率高等优点,还具有增量学习能力,可以动态修正概念描述的不足.该算法还运用了构造性归纳的思想,在学习过程中生成新的描述子,使概念描述空间搜索的效率得到提高.运行实例表明,INDUCE具有很好的应用前景. INDUCE is a version of top\|down induction of decision trees. It has the merit of being robust, efficient and precise, and it is capable of incremental learning, so as to modify concept description dynamically. INDUCE also employs the idea of constructive induction, which improves the efficiency of searching in concept description space by generating new descriptors. Successful applications of INDUCE indicate that it has a bright future.
出处 《计算机研究与发展》 EI CSCD 北大核心 1999年第5期518-522,共5页 Journal of Computer Research and Development
基金 国家自然科学基金 江苏省自然科学基金
关键词 判定树 增量学习 神经网络 知识库 INDUCE算法 decision tree, incremental learning, constructive induction, neural network
  • 相关文献

参考文献9

二级参考文献5

共引文献26

同被引文献42

  • 1张燕平,张铃,段震.构造性核覆盖算法在图像识别中的应用[J].中国图象图形学报(A辑),2004,9(11):1304-1308. 被引量:17
  • 2肖雪,何中市.基于向量空间模型的中文文本层次分类方法研究[J].计算机应用,2006,26(5):1125-1126. 被引量:12
  • 3王峥.一种改进的神经网络增量学习算法[J].计算机科学,2007,34(6):177-178. 被引量:3
  • 4Wang Y Z, Zhang F, Chen LW. An approach to incremental SVM learning algorithm. ISECS International Colloquium on Computing, Communication, Control, and Management, 2008, 352-354.
  • 5Tu S, Ben K, Tian L, et al. Combination of SOM and RBF based on incremental learning for acoustic fault identification of underwater vehicles. Congress on Image and Signal Processing, 2008(4): 38-42.
  • 6Quinlan J R. Induction of decision trees. Machine Learning,1986,1(1) : 81-106.
  • 7Utgoff P E. Incremental induction of decision trees. Machine Learning, 1989, 65(40): 161- 186.
  • 8Zhao S, Zhang Y P, Zhang L, etal. Probability model of covering algorithm. International Conference on Intelligent Computing, Kunming Lecture Notes in Computing Science. Springer Berlin/Heidelberg, 2006, Part 1: 440-444.
  • 9Li M F, Hui H H. Incremental back propagation learning networks [J]. IEEE Trans Neural Networks,1996(3) 1757-761.
  • 10Tian F, Zhang H, Lu Y S. Incremental learning of Bayesian networks with hidden variable [C]//Proceedings of IEEE International Conf on Data Mining. Maebashi, Japan: Is[ n. ], 2001:651 - 652.

引证文献6

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部