期刊文献+

归纳逻辑程序设计中的优化问题研究 被引量:1

ON OPTIMAL PROBLEMS IN INDUCTIVE LOGIC PROGRAMMING
下载PDF
导出
摘要 归纳逻辑程序设计的核心问题是如何从背景知识中优选谓词构造满足约束的归纳假设.按Ocam准则,满足约束的最精简归纳假设为优,但迄今归纳逻辑程序设计中精简归纳假设构造的计算复杂性尚未解决.文中以扩张矩阵理论为工具证明了归纳假设构造中的一些主要最优化问题的计算复杂性是NP困难的,并给出了构造优假设的启发式算法,实验表明该算法产生的归纳假设在结构上具有明显的优越性. The essential issue in inductive logic programming is how to construct inductive hypotheses with optimal predicates selected from background knowledge and constrains satisfied.According to Occam's principle,the simplest inductive hypotheses are the best.The computational complexity of constructing simplest inductive hypotheses,however,has not been fully investigated.Based on extension matrix,the main optimal problems in ILP are proven to be NP hard.A heuristic algorithm is then presented to solve the problems.The experiments show that the algorithm has superiority in the structures of inductive hypotheses produced.
出处 《计算机研究与发展》 EI CSCD 北大核心 1999年第5期560-566,共7页 Journal of Computer Research and Development
基金 国家"八六三"高技术计划基金
关键词 归纳学习 归纳逻辑程序 程序设计 优化 Inductive learning,inductive logic programming,extension matrix,computational complexity
  • 相关文献

参考文献3

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2Quinlan T R,Machine Learning,1990年,19卷,5期,239页
  • 3Hong J R,Int J Computer Information Science,1985年,14卷,6期,421页

二级参考文献3

  • 1Wu X,A Heuristic Covering Algorithm for Extension Matrix Approach.Department of Artificial Intelligence,1992年
  • 2洪家荣,Proc Int Computer Science Conference’88, Hong Kong,1988年
  • 3洪家荣,Int Jnal of Computer and Information Science,1985年,14卷,6期,421页

共引文献95

同被引文献6

  • 1Zheng Lei, Liu Chunnian. Generating Numerical Constraints in CiLP [ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2005,28(19) :91 - 108.
  • 2Muggteton S,Page C D. Beyond first-order learning: inductive logic programming with higher-order logic [ J ]. Lecture Notes in Computer Science, 2004,17(14) :357 -364.
  • 3Srinicasan A, Camacho R. Experiments in numeric reasoning with inductive logic programming [ J ]. Lecture Notes in Computer Science, 2006,25 (8) :127 -138.
  • 4Scbag M, Rouveirol C. Constraint Inductive Logic Programming[ J]. Lecture Notes in Computer Science ,2006,24 (8) :277 -294.
  • 5QUINLAN J R. Learning Logic Definitions from Relations [ J ]. Machine Learning, 1990,12 (5) :239 -266.
  • 6Tom M Mitchell.Machine Learning[M].北京:机械工业出版社,2003:197-219.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部