摘要
设hk2,k2代表滤波器的系数(k1=0,1,…,l2-1,k2=0,1,…,m2-1),xn1,n2和n1,n2(n1=0,1,…,l1-1,n2=0,1,…,m1-1)分别代表滤波器的输入和输出,本文给出了计算yn1,n2(它是xn1,n2和hn1,n2的线性卷积)的二维重叠保留法,这是一维重叠保留法的推广和发展.在许多应用中,输入和输出的长度很长,相比之下,滤波器的系数长度较短.如果用直接的方法计算yn1,n2,其乘法运算的个数将很大.本文指出在数字信号处理领域中用重叠保留法计算yn1,n2是有效的.这一方法通过计算一系列长为N和M的循环卷积来计算yn1,n2(n1=0,1,…,l1-1,n2=0,1,…,m1-1),这里N=2d,M=2d′,N=N′+l2-1<l1,M=M′+m2-1<m1.所以能够用快速数论变换(FNTT)或快速付里叶变换(FFT)计算循环卷积.这有可能使我们用这一方法处理一个无限输入序列xn1,n2和有限滤波器系数hk1。
The
authors give an Overlap save algorithm for the calculation of the two dimensional
digital convolution by supposing that h k 1,k 2 are the filter coefficients ( k 1
=0,1,…, l 2-1,k 2=0,1,…,m 2-1 ), x n 1,n 2 and y n 1,n 2 ( n 1=0,1,…,l 1,n
2=0,1,…,m 1-1) are the input and output of the filter,respectively.In many DSP
applications the lengths l 1 and m 1 are very long but lengths l 2 and m 2
are short.So, if using overlap save method to calculate y n 1,n 2 which is the
convolution of two 2 dimensional sequence x n 1,n 2 and h n 1,n 2 ,then the
number of multiplication is small in many particular cases.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第2期184-196,共13页
Journal of Sichuan University(Natural Science Edition)
基金
高等学校博士学科点专项科研基金
关键词
二维
重叠保留法
数字卷积
卷积
数字信号处理
two dimensional
overlap save method
two dimensional digital convolution
cyclic convolution
fast fourier
transform algorithm
number theoretic transform