摘要
把有关数值连续正定函数表示的Bochner定理推广到更一般的情形,并将证明从一个局部紧交换群到一个C*-代数的连续正定函数能够表示为向量值正测度的Fourier变换.局部紧交换群到C*-代数的连续正定函数对C*-代数上的广义函数有重要作用.同时给出一个具体应用,推广Bochner-Schwartz定理至算子代数情形,得到S′(A)上正定广义函数θ能表示为(θ,φ)=∫φ(λ)dμ(λ).
In
relation to the representation of positive definite function on numerical value,the author extends
its Bochner theorem to the more general situation.As it will be proved,the continuous positive
definite function from a locally compact Abel group to a C * algebra can be represented as
Fourier transform of vectrovalued positive measure;and the continuous positive definite
function from locally compact Abel groups to C * algebra will play an important role in
geeneralized function of C * algebra.Moreover,a specific application is given.Bochner
schwartz theorem is extented to C * algebra ,and the positive definite generalized function
θ can be represented as ( θ,φ)= ∫ (λ) d μ(λ)
出处
《华侨大学学报(自然科学版)》
CAS
1999年第2期114-117,共4页
Journal of Huaqiao University(Natural Science)
关键词
正定函数
算子代数
局部紧群
C^*代数
locally compact Abel
groups, dual group, positive definite function, C * algebra