摘要
若f′(x)在x0两侧符号不相同,则f(x0)是极值;若f′(x)在x0两侧符号相同,则f(x0)不是极值。本文指出了常被忽略的第三种情况,即f′(x)在x0两侧有不确定的符号,此时f(x0)可能是也可能不是极值,文中给出了两个例子。
If f′(x) has different sign to the left and right of x 0 ,then f(x 0) is a relative extremum.If f′(x 0) has the same sign on both sides of x 0 ,then f(x 0) is not a relative extremum.We point out the third situation wihich is often neglected,that is, f′(x) has indefinite sign on both sides of x 0 .In this case f(x 0) may or may not be a relative extremum.Two examples are given in this paper.
出处
《山东科学》
CAS
1999年第1期13-15,共3页
Shandong Science