期刊文献+

基于粗糙集和蚁群优化算法的特征选择方法 被引量:19

A method for feature selection based on rough sets and ant colonyoptimization algorithm
下载PDF
导出
摘要 特征选择在许多领域特具有重要的作用.本文将粗糙集方法和蚁群优化算法相结合,提出一种基于粗糙集蚁群优化方法的特征选择的算法.该算法以属性依赖度和属性重要度作为启发因子应用于转移规则中,用粗糙集方法的分类质量和特征子集的长度构建信息素更新策略.通过对数据集的测试,结果表明所提出的方法是可行的. Feature selection has become the focus of research in the field of data mining,machine learning,pattern recognition and so on.Feature selection uses a more stable set and appropriate precision characteristics to describe the original feature set.Feature selection research has focused on two aspects: one is for the search strategy of the subset and the other is the performance evaluation feature subset.Therefore,the research on more effective feature selection algorithm,to obtain the better feature subset,to reduce the time complexity of the algorithm,and to find the fast feature selection algorithm,is still the focus of the study of feature selection.According to the defects and deficiencies of the current algorithm,by analyzing the advantages and disadvantages of the existing algorithms,the current shortcomings and deficiencies of methods have been found to propose a new method for feature selection which combined the rough set method and ant colony optimization algorithm.To improve the algorithm's performance,the core attribute as the start of the feature selection.In the transfer rules and the pheromone update strategy,this algorithm uses rough set dependency and attributes significance to guide the ants search process to improve the performance of the algorithm.In addition,the quality of classification based on rough set method and the length of the feature subset are used to measure the strengths and weaknesses of feature subset.By choosing a data set with certain number of data and attributes the proposed method is tested to compare with the feature selection method based on rough set and the feature selection method based on ant colony optimization.Testing and comparison results show that the proposed method is feasible and this method has obvious advantages in the indicators feature subset length and accuracy when the data set have core attributes.Finally,the given example and testing in real datasets show that the proposed method is effective.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期487-493,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(50863003 61070139) 江西省教育厅科技资助项目(赣教技字[GJJ08042]号)
关键词 粗糙集 特征选择 蚁群算法 rough sets feature selection ant colony algorithm
  • 相关文献

参考文献19

  • 1Liu H, Motoda H. Feature selection for knowledge discovery and data mining. Kluwer: Academic Publishers, 1998, 214.
  • 2Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3:1157-1182.
  • 3Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 2000, 33 (1): 25-41.
  • 4Sun Z H, Bebis G, Miller R. Obieet detection using feature subset selection. Pattern Reeognition, 2004, 37(11):2165-2176.
  • 5Jain A K, Duin R D W, Mao J C. Statistical pattern recognition: A review. Institute of Electrieal and Electronics Engineers Transaction Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
  • 6Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 2000,33 (1) : 25-41.
  • 7Chen X W. An improved branch and bound al gorithm for feature selection. Pattern Recognition Letters, 2003, 24(12):1925-1933.
  • 8王凌.智能优化算法及其应用.北京:清华大学出版社,2004
  • 9Wu B L, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioin for Maties, 2003,19(13) :1636-1643.
  • 10Swiniarski R W, Skowron A. Rough set methods in feature selection and recognition. Pattern Recognition Letters, 2003, 24(6): 833-849.

二级参考文献36

  • 1杨建林.基于文献集相似度的分类方法[J].情报学报,1999,18(S1):92-94. 被引量:5
  • 2林春燕,朱东华.科学文献的模糊聚类算法[J].计算机应用,2004,24(11):66-67. 被引量:9
  • 3Casillas A,Gonzdlez de Lena M T,Martínez R.Document clustering into an unknown number of clusters using a genetic algorithm.International Conference on Text Speech and Dialogue,2003,43-49.
  • 4Selim S Z,Ismail M A.K-means-type algorithms:a generalized convergence theorem characterization of local optimality.IEEE Transactions Pattern Analysis and Machine Intelligence,1984,6(1):81-87.
  • 5Bradley P S,Fayyad U M.Refining initial points for K-means clustering.Advance in Knowledge Discovery and Data Mining.Cambridge:MIT Press,1996.
  • 6Raymond T N,Han J W.Efficient and effective clustering methods for spatial data mining.Proceeding of the 20th VLDB Conference Santiago,Chile,1994,144-155.
  • 7Shi Z.Efficient online spherical K-means lustering.Proceedings of the 2005 IEEE International Joint Conference on Neural Networks.Montreal,IEEE Press,2005,3180-3185.
  • 8Gareth J,Alexander M R,Chawchat S,et al.Non-hierarchic document clustering using a genetic algorithm.Information Research,1995,1(1).
  • 9Pearson R, Coney G, Shwaber J. Imbalanced clustering for microarray time-series. Proceedings of the ICML' 03 Workshop on Learning from Imbalaneed Data Sets. Washington, DC,2003.
  • 10Wu G, Chang E Y. Class-boundary alignment for imbalanced dataset learning. Proceedings of the ICML' 03 Workshop on Learning from Imbalanced Data Sets. Washington, DC, 2003.

共引文献272

同被引文献214

引证文献19

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部