期刊文献+

一种新的基于粗糙集的动态样本识别算法 被引量:8

A new dynamic sample recognition algorithm based on rough set
下载PDF
导出
摘要 样本识别是知识获取的最终应用体现,是数据挖掘研究中的一个重要内容.现有的数据挖掘算法众多,如何才能选择到一个泛化能力较强、识别率较高的最优算法成为研究的重点.文中利用粗糙集能处理不完整、不精确数据的优势,结合支持向量机、决策树方法,通过分析数据的特征,提出利用样本对规则集的覆盖度和设置一个相关阈值来进行最优分类方法的动态选择.在第一时间为样本选择到相对较优的分类算法.仿真实验验证了算法的有效性. Sample identification is the ultimate application of knowledge acquisition,is an important element of the data mining study.There have been a lot of mining algorithms,how to choose the best algorithm with strong generalization ability is now a main research point.In this paper,we make use of the advantages that rough set can handle incomplete and inaccurate data,combined with Support Vector Machines,Decision Tree methods,by analyzing the characteristics of the data,presenting using a rule union's coverage and setting a threshold to select the optimal classification method dynamically.It can find out the best algorithm at the first time.There are four steps in total.First,use rough set methods to get the rule union.Second,by analyzing the relation of sample example and rule union,putting forward uses the coverage of sample to rule union to judge whether it is suitable to use rough sets to identify the sample.The coverage reflects the number of rules that match with the sample.When the coverage is greater(or less) than 1/n,(the n here is the number of rules we get),it indicates that there are more than one rules(or no rules) match with the sample,then it may identifies the sample in error(or refuses to recognize),the sample in that case need further analysis.Third,to the samples leaved from step 2,computing the distance between it and the support vector points,when the distance is greater than a certain threshold,then it tells us that SVM can classify it well,so uses the SVM method to classify it.Forth,if the distance in step 3 is smaller than the threshold,then,uses the decision tree algorithm to identify it.In order to verify the effective of the algorithm,in the experiment part,we choose eight data sets from the UCI to test.To each data set,We select 50 percent data randomly to be train set and the other 50 percent data is used to be test set.The result shows that the algorithm in this paper has the equal well recognition rate with current optimal algorithm.The experiment results have verified the effectiveness of the algorithm.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期501-506,共6页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(60573068 60773113) 重庆市自然科学基金(2008BA201 2008BA2041) 重庆市教育委员会科学技术研究项目(KJ090512)
关键词 粗集 支持向量机 决策树 样本识别 rough sets support vector machine decision tree sample identification
  • 相关文献

参考文献22

  • 1Pawlak Z. Rough set. International Journal of Computer and Information Sciences, 1982, 11: 341-356.
  • 2Pawlak Z, Grzymala-Busse J, Slowinski R, et al. Rough sets. Communications of the Association for Computing Machinery, 1995, 38 (11): 89-95.
  • 3Pawlak Z. Vagueness--A rough set view. Mycielski J, Rozenberg G, Salomaa A. Structures in logic and computer science: A selection of essays in honor of A. Ehrenfeueht. Berlin.. Springer-Verlag, 1997, 106 - 117.
  • 4XieK M, Chen Z H, Xie G, etal. BGrC for superheated steam temperature system modeling in power plant. Proceedings of the 2006 IEEE International Conference on Granular Computing. Atlanta, USA, 2006,708-711.
  • 5Valdes J J, Romero E, Gonzalea R. Data and knowledge visualization with virtual reality spaces, neural networks and rough sets: Application to geophysical prospecting neural networks. Proceedings of the International Joint Conference on Neuval Network 2007. Orlando, Florida, USA, 2007,160-165.
  • 6Hirano S, Tsumoto S. Segmentation of medical images based on approximations in rough set theory. Proceedings of the Rourg Sets and Current Trends in Computing 2002, 2002: 554-563.
  • 7朱有产,熊伟,静永文,高亚彬.基于Rough Set理论的综合分类器设计与实现[J].通信学报,2006,27(z1):63-67. 被引量:6
  • 8Peng Y Q, Liu G Q, Geng H S. Application of rough set theory in network fault diagnosis. Proceedings of the Information Technology and Application, 2005, 2:556-559.
  • 9Wojcik Z M. Detecting spots for NASA space programs using rough sets. Proceedings of the 2^nd International Conference on Rough Sets and Current Trends in Computing, 2000, 531-537.
  • 10Swoniarski R, Hargis L. Rough set as a format end of neural-networks texture classifiers. Neurocomputig, 2001,36(1-4) :85-102.

二级参考文献54

  • 1彭宁云,文习山,王一,陈江波,柴旭峥.基于线性分类器的充油变压器潜伏性故障诊断方法[J].中国电机工程学报,2004,24(6):147-151. 被引量:35
  • 2莫娟,王雪,董明,严璋.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报,2004,24(7):162-167. 被引量:85
  • 3王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 4Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 5Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 6Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 7Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 8Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 9Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
  • 10Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.

共引文献263

同被引文献134

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部