期刊文献+

耦合边界下非线性抛物方程组解的熄灭

Quenching of solutions for the nonlinear parabolic system coupled at the boundary
下载PDF
导出
摘要 探讨非线性抛物型方程组在非线性流量边界条件下的初边值问题.利用上下解方法和杨格不等式,证明了x=1是方程组的惟一熄灭点,给出了解在有限时间熄灭的充分条件.在一定条件下,得到了解的熄灭速率. The initial boundary value problem of nonlinear parabolic system coupled at the boundary through a nonlinear flux is considered.Upper and lower solutions technique and Young inequality were used,the only quenching point is the origin x=1 was obtained.Sufficient conditions about the quenching of solutions are given.The quenching rates under some assumptions are obtained.
出处 《纺织高校基础科学学报》 CAS 2010年第3期279-281,共3页 Basic Sciences Journal of Textile Universities
基金 山西省自然科学基金资助项目(2007011008) 咸阳师范学院科研项目(07XSYK284)
关键词 抛物型方程组 熄灭 惟一熄灭点 熄灭速率 parabolic system quenching only quenching point quenching rate
  • 相关文献

参考文献8

  • 1FILA M,LEVINE H A.Quenching on the boundary[J].Nonlinear Anal,1993,21(10):795-802.
  • 2de PABLO A,QUIROS F,ROSSI J D.Nonsimultaneous quenching[J].Appl Math Letters,2002,15(3):265-269.
  • 3郑斯宁,宋先发.奇异非线性边界流耦合热方程组的熄灭速率[J].中国科学(A辑),2007,37(11):1349-1360. 被引量:1
  • 4FRIEDMAN A,HERRERO M A.Extinction properties of semilinear heat equation with strong absorption[J].J Math Anal Appl,1987,124(2):530-546.
  • 5BENACHOUR S,lAURENCOT P H,SCHMITT D.Extinction and delay estimates for viscous hamiton jacobi equation in RN[J].Proc Amer Math Soc,2002,130(6):1 103-1 111.
  • 6HERRERO M A,VALZQUEZ J L.Approaching an extinction point in one-dimensional semilinear heat equation with strong absorption[J].J Math Anal Appl,1992,170(2):353-381.
  • 7FERREIRA R,de PABLO A,QUIROS F.Nonsimultaneous quenching in a system of heat equations coupled at the boundary[J].Z Angew Math Phys,2006,57(1):1-9.
  • 8QUIROS F,ROSSI J D.Non-simultaneous blow-up in a nonlinear parabolic system[J].Advanced Nonlinear Studies,2003,3(1):397-418.

二级参考文献10

  • 1Kawarada H. On solutions of initial boundary value problem for ut= uxx -k 1/(1 - u). RIMS Kyoto Univ, 10:729-736 (1975)
  • 2Chart C Y. New results in quenching. In: Proc 1st World Congress of Nonlinear Analysis. Berlin: Walter de Gruyter, 1996
  • 3Deng K, Xu M X. Quenching for a nonlinear diffusion equation with a singular boundary conditions. Z Angew Math Phys, 50:574-584 (1999)
  • 4Deng K, Xu M X. On solutions of a singular diffusion equation. Nonlinear Anal, 41:489-500 (2000)
  • 5Levine H A. Advances in quenching. In: Proc Internat Conf on Reaction-Diffusion Equations and Their Equilibrium States. Boston: Birkhauser, 1992
  • 6Levine H A, Lieberman G M. Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions. J Reine Angew Math, 345:23-38 (1983)
  • 7Fila M, Levine H A. Quenching on the boundary. Nonlinear Anal, 21:795-802 (1993)
  • 8de Pablo A, Quiros F, Rossi J D. Nonsimultaneous quenching. Appl Math Lett, 15:265-269 (2002)
  • 9Fevreira R, de Pablo A, Quiros F, et al. Nonsimultaneous quenching in a system of heat equations coupled at the boundary. Z Angew Math Phys, 57:1-9 (2006)
  • 10Chadam J M, Peirce A, Yin H M. The blowup property of solutions to some diffusion equations with localized nonlinear reactions. J Math Anal Appl, 169:313-328 (1992)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部