摘要
考虑非线性四阶三点边值问题(P)u(4)(t)=h(t)f(u),0<t<1,u(0)=u′(1)=u″(0)=u″(η)-u″(1)=0.通过利用锥上的Krasnosel′skii不动点定理,不仅获得了边值问题(P)的至少一个正解的存在性结果,而且建立了问题(P)的无穷多个正解的存在性定理.
A nonlinear fourth-order three-point boundary value problem (P){u(4)(t)=h(t)f(u),0t1,u(0)=u′(1)=u″(0)=u″(η)-u″(1)=0 is considered.By using Krasnosel′skii fixed point theorem in cones,results on existence of at least one positive solution to the boundary value problem(P) are obtained,and existence theorem of infinitely many positive solution to the problem(P) is established.
出处
《纺织高校基础科学学报》
CAS
2010年第3期289-292,共4页
Basic Sciences Journal of Textile Universities
关键词
非线性四阶边值问题
正解
存在性
多解性
nonlinear fourth-order boundary value problems
positive solution
existence
multiplicity