期刊文献+

基于弱形式求积元的Timoshenko梁弹塑性分析

Elastoplastic Analysis of Timoshenko Beam Based on Weak-form Quadrature Element Method
下载PDF
导出
摘要 应用塑性形变理论,建立了基于弱形式求积元的Timoshenko梁弹塑性分析方程,利用全量初应力矩阵迭代法对方程进行求解.进一步编制了程序对两端固支、横截面分层钢梁进行了弹塑性分析,并与商用有限元软件MIDAS结果进行比较,验证了该方法的正确性.研究表明,将弱形式求积元法应用于弹塑性分析,与有限元方法相比,无需细分单元就能得到较为精确的结果;与微分求积法相比,处理材料非线性问题更为灵活、方便. The elastic-plastic equations of Timoshenko beam based on weak-form quadrature element method is established by deformation theory and solved by employimg the whole amount method of initial stress.The plastic analysis program of the clamped,layered steel beam corss-section is given.Compared with the commercial finite element software MIDAS,the results verified the validity of the method and showed that compared with the finite element method,for the weak form quadrature element method was applied to elastic-plastic analysis,more accurate results could be obtained without sub-unit;and compared with the differential quadrature method,it can deal with material nonlinearity more flexibly and conveniently.
出处 《信阳师范学院学报(自然科学版)》 CAS 2010年第4期527-529,536,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 地震行业科研专项经费项目(200808081)
关键词 TIMOSHENKO梁 弱形式求积元法 微分求积法 弹塑性 分层元 Timoshenko beam weak-form quadrature element method differential quadrature method elastoplastic multi-layer element
  • 相关文献

参考文献5

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2Zhong H Z,Tian Y.Flexural vibration analysis of an eccentric annular Mindlin plate[J].Arch Appl Mech(S0939-1533),2007,77:185-195.
  • 3Zhong H Z,Tian Y.A weak form quadrature element method for plane elasticity problems[J].Applied Mathematical Modelling (S0307-904X),2009,33:3801-3814.
  • 4陈惠发,萨里普A F.弹性与塑性力学[M].余天庆,王勋文,刘再发,译.北京:中国建筑工业出版社,2004.
  • 5聂国隽,仲政.用微分求积法求解梁的弹塑性问题[J].工程力学,2005,22(1):59-62. 被引量:26

二级参考文献8

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2Owen DRJ, Hinton E. Finite Element in Plasticity: Theory and Practice [M]. U.K.: Pineridge Press Limited Swansea, 1980.
  • 3Bert CW, Malik M. The differential quadrature method in computational mechanics: A review [J]. Appl Mech Rev, 1996, 49(1): 1-28.
  • 4Moradi S, Taheri F. Delamination bucking analysis of general laminated composite beams by differential quadrature method [J]. Composites: Part B, 1999, 30: 503-511.
  • 5Du H, Lim MK, Lin RM. Application of generalized differential quadrature method to structural problems [J]. Int J numer methods eng, 1994, 37: 1881-1896.
  • 6Wang X., Bert CW, Striz AG. Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates [J]. Computers & Structures, 1993, 48(3): 473-479.
  • 7Moradi S, Taheri F. Post buckling analysis of delaminated composite beams by differential quadrature method [J]. Composite Structures, 1999, 46: 33-39.
  • 8Karami G, Malekzadeh P. A new differential quadrature methodology for beam analysis and the associated differential quadrature element method [J]. Comput. Methods Appl. Mech. Engrg., 2002, 191: 3509-3526.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部