期刊文献+

非线性最优控制问题的保辛多层次求解方法 被引量:4

Symplectic Multi-Level Method for Solving Nonlinear Optimal Control Problem
下载PDF
导出
摘要 将非线性系统的最优控制问题导向Hamilton系统,提出了求解非线性最优控制问题的保辛多层次方法.首先,以时间区段两端状态为独立变量并在区段内采用Lagrange插值近似状态和协态变量,通过对偶变量变分原理将非线性最优控制问题转化为非线性方程组的求解.然后,在保辛算法的具体实施过程中提出了多层次求解思想,以2N类算法为基础由低层次到高层次加密离散时间区段,利用Lagrange插值得到网格加密后的初始状态与协态变量作为求解非线性方程组的初值,可提高计算效率.数值算例验证了算法在求解效率与求解精度上的有效性. The optimal control problem for nonlinear system was transformed into Hamiltonian system and a symplectic-preserving method was proposed. The state and costate variables were approximated by Lagrange polynomial and state variables at two ends of the time interval were taken as the independent variables, and then based on the dual variable principle, nonlinear op- timal control problems were replaced by nonlinear equations. In the implement of symplectic al- gorithm, based on the 2N algorithm, a mnlti-level method was proposed. When the time grid was refined from the low level to the high level, the initial state variables and costate variables of nonlinear equations could be obtained from Lagrange interpolation at the low level grid, which could improve the efficiency. Numerical simulations show the precision and efficiency of the proposed algorithm.
出处 《应用数学和力学》 EI CSCD 北大核心 2010年第10期1191-1200,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10632030 10902020 10721062) 高等学校博士点基金资助项目(20070141067) 辽宁省博士启动基金资助项目(20081091) 辽宁省重点实验室资助项目(2009S018)
关键词 非线性最优控制 对偶变量 变分原理 多层次迭代 保辛 nonlinear optimal control dual variable variational principle multi-level iteration symplectic algorithm
  • 相关文献

参考文献13

  • 1Sage A P, White C C. Optimum Systems Control[ M]. New Jersey: Prentice-Hall, 1977.
  • 2Bryson A E, Ho Y C. Applied Optimal Control[ M ]. New York: Hemisphere Publishing Corporation, 1975.
  • 3Schley C H, Lee I. Optimal control computation by the Newton-Raphson method and the Riccati transformation[J]. IEEE Transactions on Automatic Control, 1967, 12(2) :139-144.
  • 4谭述君,钟万勰.非线性最优控制系统的保辛摄动近似求解[J].自动化学报,2007,33(9):1004-1008. 被引量:4
  • 5Beeler S C, Tran H T, Banks H T. Feedback control methodologies for nonlinear systems [ J]. Journal of Optimization Theory and Applications, 2000, 107( 1 ) : 1-33.
  • 6Nedeljkovic N. New algorithms for unconstrained nonlinear optimal control problems [ J ]. IEEE Transactions on Automatic Control, 1981, 26(4) : 868-884.
  • 7Benson D A, Huntington G T, Thorvaldsen T P, Rao A V. Direct trajectory optimization and costate estimation via an orthogonal collocation method [J ]. Journal of Guidance Control and Dynamics, 2006, 29(6) 1435-1439.
  • 8Badakhshan K P, Kamyad A V. Numerical solution of nonlinear optimal control problems u- sing nonlinear programming [J ]. Applied Mathematics and Computation, 2007, 187 ( 2 ) : 1511-1519.
  • 9Arnold V I. Mathematical Methods of Classical Mechanics[ M ]. New York: Springer-Verlag, 1989.
  • 10高强,谭述君,张洪武,钟万勰.基于对偶变量变分原理和两端动量独立变量的保辛方法[J].动力学与控制学报,2009,7(2):97-103. 被引量:6

二级参考文献16

  • 1钟万勰.分析结构力学与有限元[J].动力学与控制学报,2004,2(4):1-8. 被引量:26
  • 2钟万勰,姚征.时间有限元与保辛[J].机械强度,2005,27(2):178-183. 被引量:30
  • 3钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 4Arnold V I. Mathematical Methods of Classical Mechanics. New York : Springer - Verlag, 1989.
  • 5Goldstein H. Classical Mechanics. 2 ed. London : Addison - Wesley, 1980.
  • 6Feng K. On Difference Schemes and Symplectic Geometry. Proceedings of the 5th international symposium on differential geometry and differential equations, Beijing, 1984.
  • 7Hairer E, Wanner G. Solving Ordinary Differential Equations II - Stiff and Differential - Algebraic Problems 2ed. Berlin : Springer, 1996.
  • 8Hairer E,NOrsett S P,Wanner G. Solving Ordinary Differential Equations I - Nonstiff Problems 2ed. Berlin: Springer, 1993.
  • 9Hairer E, Lubich C, Wanner G. Geometric Numerical Integration:Structure - Preserving Algorithm for Ordinary Differential Equations. Second ed. New York : Springer,2006.
  • 10Sage A P,White C C.Optimum Systems Control.New Jersey:Prentice-Hall,1977

共引文献7

同被引文献13

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部