期刊文献+

强非线性多自由度动力系统主共振同伦分析法研究 被引量:7

Study on Primary Resonance of Multi-Degree-of-Freedom Dynamic Systems With Strongly Non-Linearity Using the Homotopy Analysis Method
下载PDF
导出
摘要 应用同伦分析方法(HAM)解决强非线性多自由度系统在谐波激振力下的主共振问题.同伦分析方法的有效性独立于所考虑的方程中是否含有的小参数.同伦分析方法提供了一个简单的方法,通过一个辅助参数h-来调节和控制级数解的收敛区域.两个具体算例表明,同伦分析方法得出的结果与修正Linstedt-Poincaré法、增量谐波平衡法的解决方案得出的结果相吻合. The homotopy analysis method (HAM) was presented for the primary resonance of multi-degree-of-freedom system with strongly non-linearity excited by harmonic forces. The vao lidity of the HAM is independent of whether or not there are small parameters in the considered equation. The HAM has provided a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter h. Two examples were presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincare method and the incremental harmonic balance method.
出处 《应用数学和力学》 CSCD 北大核心 2010年第10期1229-1238,共10页 Applied Mathematics and Mechanics
基金 中央高校基本科研业务费专项资金资助项目(90405009)
关键词 同伦分析法 主共振 强非线性 级数解 多自由度 homotopy analysis method primary resonance strongly non-linearity series solution multi-degree-of-freedom
  • 相关文献

参考文献23

  • 1Melvin P J. On the construction of Poincare-Lindstedt solutions: the nonlinear oscillator e- quation[ J]. SIAM Journal on Applied Mathematics, 1977, 33 ( 1 ) : 161-194.
  • 2Nayfeh A H. Perturbation Methods[M]. New York: John Wiley &Sons, 1973.
  • 3Larionov G S, Khoang V T. The method of averaging in nonlinear dynamical problems occur- ring in the theory of viscoelasticity[ J]. Polymer Mechanics, 1972, 8( 1 ) : 31-35.
  • 4Kakutani T, Sugimoto N. Krylov-Bogoliubov-Mitropolsky method for nonlinear wave modulation[J]. Physics of Fluids, 1974, 17(8): 1617-1625.
  • 5Cheung Y K, Chen S H, Lau S L. Modified IAnstedt-Poincare method for certain strongly non- linear oscillators[J]. International Journal of Non-Linear Mechanics, 1991, 26(3) : 367- 378.
  • 6Pierre C, Dowell E H. A study of dynamic instability of plates by an extended incremental harmonic balance method [ J ]. Transactions of the ASME. Journal of Applied Mechanics, 1985, 52(3) : 593-597.
  • 7Andrianov I V, Danishevs' kyy V V, Awrejcewicz J. An artificial small perturbation parameter and nonlinear plate vibrations[ J]. Journal of Sound and Vibration, 2005, 283(3) : 561-571.
  • 8Karmishin A V, Zhukov A I, Kolosov V G. Methods of Dynamics Calculation and Testing for Thin-Walled Structures [ M ]. Moscow: Mashinostroyenie, 1990.
  • 9Adomian G. A new approach to the heat equation--an application of the decomposition method[J]. Journal of Mathematical Analysis and Applications, 1986, 113( 1 ) : 202-209.
  • 10Liao S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method [ M ]. Boca Raton: Chapman & Hall/CRC Press, 2003.

二级参考文献38

  • 1李书,冯太华,范绪箕.动力模型修正中逆特征值问题的数值解法[J].计算结构力学及其应用,1995,12(3):276-280. 被引量:5
  • 2戴华.矩阵特征值反问题的若干进展[J].南京航空航天大学学报,1995,27(3):400-413. 被引量:11
  • 3Mickens R E. Mathematical and numerical study of the Duffing-harmonic oscillator[ J]. J Sound Vibration, 2001,244 (3) : 563-567.
  • 4Lira C W, Wu B S. A new analytical approach to the Duffmg-harmonic oscillator[ J ]. Phys Lett A, 2003,311(5) : 365-377.
  • 5Tiwari S B, Rao B N, Swamy N S, et al. Analytical study on a Duffing-hatmonic oscinator[J]. J Sound Vibration,2005,285(4) : 1217-1222.
  • 6Hu H,Tang J H. Solution of a Duffing-harmonic oscillator by the method of harmonic balance[ J]. J Sound Vibration ,2006,294(3) :637-639.
  • 7Lim C W, Wu B S, Sun W P. Higher accuracy analytical approximations to the Duffmg-harmonic oscillator[ J ] . J Sound Vibration, 2006,29-(4) : 1039-1045.
  • 8Hu H. Solutions of the Duffmg-hamlonic oscillator by an iteration procedure[ J]. J Sound Vibration, 2006,298( 1 ) :446-452.
  • 9Murdock J A. Perturbations : Theory and Methods [ M]. New York: Wiley, 1991.
  • 10Nayfeh A H. Perturbation Methods I M]. New York: Wiley, 2000.

共引文献23

同被引文献64

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部