摘要
目的通过参考Newton登革热传播模型及SIR仓室模型,建立登革热数学模型,以深入研究输入型登革热的流行规律和评价不同防治措施的效果。方法建立当时实际相吻合的登革热传播模型,模拟描述2004年浙江省慈溪市逍林镇登革热暴发流行,同时结合当时实际研究登革热流行情况。结果根据模型可得出总的人均蚊媒密度阈值为2.4只,登革热人群免疫抗体水平>67.8%时,才有可能在登革热病原体输入后不发生登革热的流行暴发。结论数学模型模拟结果与现场调查比较接近,特别是暴发的中后期相对较为吻合,在实际的现场流行病控制中数学模型的应用将为疫情的控制提供必要的帮助和参考意见。
Objective To establish a mathematical model of dengue fever based on the Newton model of the transmission of dengue fever and the SIR compartment for in-depth study of the epidemiological characteristics of imported dengue fever and of the effects of different control measures.Methods A model of the transmission of dengue fever,consistent with the actual situation of the dengue fever outbreak in Cixi city,Zhejiang province in 2004,was established to simulate and study the scenario.Results According to the model,the total mosquito density threshold per capita was 2.4.Thus,an epidemic outbreak of dengue fever would not be possibly avoided following import of pathogens unless the antibody level among the population was 67.8%.Conclusion The simulation results derived from the mathematical model was close to that of field investigation,which was particularly consistent with the mid- to late-period of the outbreak.Hence,the application of mathematical model may practically facilitate field control of epidemic diseases.
出处
《中国媒介生物学及控制杂志》
CAS
CSCD
2010年第5期482-485,共4页
Chinese Journal of Vector Biology and Control
关键词
登革热
数学模型
暴发
Dengue fever
Mathematical model
Outbreak