期刊文献+

数学模型在输入型登革热暴发综合防治中的应用 被引量:3

Application of mathematical models in integrated control of imported dengue fever outbreaks
原文传递
导出
摘要 目的通过参考Newton登革热传播模型及SIR仓室模型,建立登革热数学模型,以深入研究输入型登革热的流行规律和评价不同防治措施的效果。方法建立当时实际相吻合的登革热传播模型,模拟描述2004年浙江省慈溪市逍林镇登革热暴发流行,同时结合当时实际研究登革热流行情况。结果根据模型可得出总的人均蚊媒密度阈值为2.4只,登革热人群免疫抗体水平>67.8%时,才有可能在登革热病原体输入后不发生登革热的流行暴发。结论数学模型模拟结果与现场调查比较接近,特别是暴发的中后期相对较为吻合,在实际的现场流行病控制中数学模型的应用将为疫情的控制提供必要的帮助和参考意见。 Objective To establish a mathematical model of dengue fever based on the Newton model of the transmission of dengue fever and the SIR compartment for in-depth study of the epidemiological characteristics of imported dengue fever and of the effects of different control measures.Methods A model of the transmission of dengue fever,consistent with the actual situation of the dengue fever outbreak in Cixi city,Zhejiang province in 2004,was established to simulate and study the scenario.Results According to the model,the total mosquito density threshold per capita was 2.4.Thus,an epidemic outbreak of dengue fever would not be possibly avoided following import of pathogens unless the antibody level among the population was 67.8%.Conclusion The simulation results derived from the mathematical model was close to that of field investigation,which was particularly consistent with the mid- to late-period of the outbreak.Hence,the application of mathematical model may practically facilitate field control of epidemic diseases.
出处 《中国媒介生物学及控制杂志》 CAS CSCD 2010年第5期482-485,共4页 Chinese Journal of Vector Biology and Control
关键词 登革热 数学模型 暴发 Dengue fever Mathematical model Outbreak
  • 相关文献

参考文献19

  • 1Gubler DJ. The global resirgence of arbovral diseases [J]. Trans R Soc Med Hyg, 1996,90 (4) : 449-453.
  • 2梁凤屏,文建华,罗会明,杜志明,郑夔,潘捷云,王爵铭.1992~1995年广东省登革热病原学和血清学监测报告[J].疾病监测,1997,12(11):405-408. 被引量:7
  • 3赵治国 丘福禧.海南岛登革热的流行病学调查[J].中华流行病学杂志,1986,7(1):29-29.
  • 4赵治国.海南岛登革热流行病学调查报告[C].海口:海南省首届医学病毒学学术会议论文集,1991:253-256.
  • 5黎正伦,王传兹,陈文洲,等.海南岛登革热和登革出血热[C].海口:海南省第二届医学病毒学学术会议论文集,1994:82-85.
  • 6Newton EAC, Eiter P. A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics [J]. Am J Trop Med Hyg, 1992,47 (6) : 709-720.
  • 7吴开录,吴开琛,陈文江,赵治国.登革热数学模型及其应用研究(Ⅰ)——兼评Newton的登革热传播模型[J].中国热带医学,2001,1(1):12-16. 被引量:10
  • 8Kermark MD, McKendrick AG. Contributions to the mathematical theory of epidemics [J]. Proc Roy SocA: Part Ⅰ , 1927, 115 (5) : 700-721.
  • 9Horst RT, Carlos CC. How may infection age-de-pendent infectivity affect the dynamics of HIV/AIDS [J]. SIAM J Appl Math, 1993,53 (5) : 1447-1479.
  • 10徐文雄,张仲华.年龄结构SIR流行病传播数学模型渐近分析[J].西安交通大学学报,2003,37(10):1086-1089. 被引量:30

二级参考文献31

  • 1潘志明,尹君,邱季春,刘津成,廖育煌,黄源华,刘树国.广州市某大院一起登革热暴发的流行病学调查[J].疾病监测,1995,10(11):330-331. 被引量:5
  • 2赵治国 丘福禧.海南岛登革热的流行病学调查[J].中华流行病学杂志,1986,7(1):29-29.
  • 3陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..
  • 4Thieme H R, Castillo-Chavez C. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS? [J]. Siam J Appl Math, 1993, 53(5): 1 447-1 479.
  • 5Feng Z, Iannelli M, Milner F A. A two-strain tuberculosis model with age of infection [J]. Siam J Appl Math, 2002,62(5):1 634-1 656.
  • 6Castillo-Chavez C, Feng Zhilan.Global stability of an age structure model for TB and its applications to optional vaccination strategies [J]. Mathematical Biosciences, 1998, 151(2):135-154.
  • 7Xiao Yanni, Chen Lansun, Bosch F V D. Dynamical behavior for a stage-structured SIR infectious disease model [J]. Nonlinear Analysis: Real World Applications, 2002, 3(2):175-190.
  • 8Song Baojun, Castillo-Chavez C, Aparicio J P. Tuberculosis models with fast and slow dynamics: the role of close and casual contacts [J]. Mathematical Biosciences, 2002, 180(1/2): 187-205.
  • 9陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..
  • 10黎正伦,等.海南岛登革热和登革出血热.海南省第二届全省医学病毒学学术会议论文集.1994年10月,海口,.82-85.

共引文献48

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部