摘要
Small high-quality Au/n type-GaAs Schottky barrier diodes (SBDs) with low reverse leakage current are produced using lithography. Their effective barrier heights (BHs) and ideality factors from current-voltage (I-V) characteristics are measured by a Pico ampere meter and home-built I-V instrument. In spite of the identical preparation of the diodes there is a diode-to-diode variation in ideality factor and barrier height parameters. Measurement of topology of a surface of a thin metal film with atomic force microscope (AFM) shows that Au-n type-GaAS SD consists of a set of parallel-connected micro and nanocontacts diodes with sizes approximately in a range of 100-200 nm. Between barrier height and ideality factor there is an inversely proportional dependency. With the diameter of contact increasing from 5 μm up to 200 μm, the barrier height increases from 0.833 up to 0.933 eV and its ideality factor decreases from 1.11 down to 1.006. These dependencies show the reduction of the contribution of the peripheral current with the diameter of contact increasing. We find the effect of series resistance on barrier height and ideality factor.
Small high-quality Au/n type-GaAs Schottky barrier diodes (SBDs) with low reverse leakage current are produced using lithography. Their effective barrier heights (BHs) and ideality factors from current-voltage (I-V) characteristics are measured by a Pico ampere meter and home-built I-V instrument. In spite of the identical preparation of the diodes there is a diode-to-diode variation in ideality factor and barrier height parameters. Measurement of topology of a surface of a thin metal film with atomic force microscope (AFM) shows that Au-n type-GaAS SD consists of a set of parallel-connected micro and nanocontacts diodes with sizes approximately in a range of 100-200 nm. Between barrier height and ideality factor there is an inversely proportional dependency. With the diameter of contact increasing from 5 μm up to 200 μm, the barrier height increases from 0.833 up to 0.933 eV and its ideality factor decreases from 1.11 down to 1.006. These dependencies show the reduction of the contribution of the peripheral current with the diameter of contact increasing. We find the effect of series resistance on barrier height and ideality factor.