期刊文献+

闪烁噪声下的改进粒子滤波跟踪算法 被引量:4

Improved tracking method of particle filter in glint noise environment
下载PDF
导出
摘要 在实际雷达目标跟踪系统中,雷达量测常受到闪烁噪声干扰,传统的滤波算法在闪烁噪声下,滤波性能急剧下降甚至发散。提出了一种改进的粒子滤波(particle filter,PF)算法,按照高斯牛顿迭代方法对迭代扩展卡尔曼滤波(iterated extended Kal manfilter,IEKF)中的测量更新进行修正,利用修正的IEKF来产生PF的重要性密度函数。进一步,采用马尔科夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)方法来消除重采样引起的粒子贫化问题。在给出的闪烁噪声统计模型基础上,将所提算法与PF及MCMCPF算法进行了仿真比较,结果表明该算法具有更好的跟踪性能。 In real radar target tracking system,the measure data of radar are often distributed by the glint noise.The performances of conventional filters degrade severely in the presence of glint noise.An improved particle filter(PF) is proposed.The iterated extended Kalman filter(IEKF) is modified by providing a new measurement update based on Gauss-Newton iteration,and then the modified IEKF is used to generate the proposal distribution.Additionally,the Markov chain Monte Carlo(MCMC) step is adopted to counteract the problem of particle impoverishment caused by resampling step,and the diversity of the particles is maintained.Based on the glint noise statistical model,the proposed method is compared with the PF and the MCMCPF via simulations.It is shown that the proposed method outperforms both the PF and the MCMCPF.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第10期2223-2226,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60871074)资助课题
关键词 目标跟踪 粒子滤波 迭代扩展卡尔曼滤波 马尔科夫链蒙特卡罗 闪烁噪声 target tracking particle filter(PF) iterated extended Kalman filter(IEKF) Markov chain Monte Carlo(MCMC) glint noise
  • 相关文献

参考文献15

  • 1Bar-Shalom Y,Li X R,Kirubarajan T.Estimation with applications to tracking and navigation:theory,algorithm and software[M].New York:Wiley,2001.
  • 2Julier S J,Uhlmann J K.Unscentedfiltering and nonlinear estimation[C] ∥ Proc.of the IEEE,2004,192(3):401-422.
  • 3Kostantinos N P,Dimitris H.Advancedsignal processing handbook[M].Boca Raton:CRC Press LLC,2001.
  • 4Doucet A,de Freitas J F G,Gordon N.Sequential Monte Carlo methods in practice[M].New York:Springer,2001.
  • 5Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online non-linear/non-Gaussian Bayesian tracking[J].IEEE Trans.on Signal Processing,2002,50(2):174-188.
  • 6Brehard T,Le Cadre J P.Hierarchical particle filter for bearings-only tracking[J].IEEE Trans.on Aerospace and Electronic Systems,2007,43(4):1567-1585.
  • 7Cappe O,Godsill S J,Moulines E.An overview of existing methods and recent advances in sequential Monte Carlo[J].Proc.of the IEEE,2007,95(5):899-924.
  • 8de Freitas J F G,Niranjan M,Gee A H,et al.Sequential Monte Carlo methods to train neural network models[J].Neural Computation,2000,12(4):955-993.
  • 9van der Merwe R,Doucet A,de Freitas N,et al.The unscented particle filter[R].Technical Report CUED/F-INFENG /TR 380,Cambridge University Engineering Department,Cambridge,England,2000.
  • 10HuHongtao JingZhongliang LiAnping HuShiqiang TianHongwei.Target tracking in glint noise using a MCMC particle filter[J].Journal of Systems Engineering and Electronics,2005,16(2):305-309. 被引量:5

二级参考文献17

  • 1[2]Becket K.Three-dimension target motion analysis using angle and frequency measurements[J].IEEE Trans.Aerospace and Electronic Systems,2005,41(1):284-301.
  • 2[9]Bradley M,Bell,Frederich W,Cathey.The iterated Kahnan filter update as a Gauss-Newton method[J].IEEE Transactions on Auto-maric Control,1993,38(2):294-297.
  • 3[10]Bar-Shalom Y,Li X R and Kimbarajan T.Estimation with Applica-tions to Tracking and Navigation:Theory,Algorithms,and Software.Wiley,New York,2001.
  • 4[11]Li X R and Jilkov V P.Survey of maneuvering target tracking-partⅠ:dynamic models[J].IEEE Trans.Aerospace and Electronic Sys-tems,2003,39(4):1333-1364.
  • 5[12]Pitre Byan B,Jilkov Vesselin P,Li X R.A comparative study of multiple-model algorithm for maneuvering target tracking[J].Proc.of SPIE,2005,5809:549-560.
  • 6Skolnik M L. Introduction to radar systems. McGrawHill, New York, 1980.
  • 7Wu W R, Cheng P P. A nonlinear IMM algorithm for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. , 1994, AES-30: 875~885.
  • 8Hewer G A, Martin R D, Zeh J. Robust preprocessing for Kalman filtering of glint noise. IEEE Trans. Aerosp.Electron. Syst., 1987, AES-23: 120~128.
  • 9Durovic Z M, Kovacevic B D. QQ-plot approach to robust Kalman filtering. Int. J. of Control, 1994, 61(4): 837~857.
  • 10Masreliez C J. Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. on Automatic Control, 1975. 107~ 110.

共引文献8

同被引文献29

  • 1MAHAFZABR,ELSHERBENIAZ.雷达系统设计MATLAB仿真[M].朱富国,黄晓涛,黎向阳,等译.北京:电子工业出版社,2009:156.
  • 2DIFRANCO J V,KAITERIS C. Radar performance review in clear and jamming environments [J]. IEEE AES,1981,17(5)701-710.
  • 3SKOLNIK MI.雷达系统导论[M].左群声译.第3版.北京:电子工业出版社,2010.
  • 4付中叶.统计信号处理[M].合肥:中国科技大学出版社,2009.
  • 5Julier S J, Uhlmann J K. A new Extension of theKalman Filter toNonlinear Systems. SPIE ,1997 ;3068:182-193.
  • 6Qi C, Bondon P. A new unscented particle filter. IEEE InternationalConfeerence on Acoustics, Speech and Signal Processing, 2008 :3417-3420.
  • 7Daeipour E,Bar-Shalom Y. An interacting multiple model approachfor target tracking with glint noise. IEEE Trans Aerosp Electron.Syst,1995;31 (2) :706-715.
  • 8Wu W R. Taiet tracking with glint noise. IEEE Transactions on Aer-ospace and Electronic Systems, 1993 ;23 (1) :174-185.
  • 9Gordon N. A hybrid particle filter for taiet tracking in clutter. IEEETrans on Aes,1997;33( 1) :353-358.
  • 10Boer S Y, Driessen J N. Interacting multiple model particle filter. IEE Proc of Radar Sonar Navigation ,2003 ; 150 (5) :334--349.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部