期刊文献+

亚对数空间限定的多墨水点交替式下推自动机的闭包属性

Nonclosure Property of Sublogarithmic Space-Bounded Multi-Inkdot Alternating Pushdown Automata with Only Universal States
下载PDF
导出
摘要 交替式下推自动机是并行计算的一种模型,它的空间计算复杂性研究对于解明并行算法的内存消耗具有重要意义。复杂性语言族的闭包属性反映了具有一定复杂性空间的并行计算模型之间的组合关系。论文研究仅有全称状态的交替式下推自动机的闭包属性,这些自动机均具有多个墨水点和亚对数限定的存储空间.通过设立巧妙的证人语言,本文使用反证法证明了具有有限多个墨水点的仅有全称状态的交替式下推自动机在星号、保持长度的同态、以及与正则语言的连结等运算下是不封闭的。 Alternating pushdown automaton is a theoretical model of parallel computation which can model the memory consuming of parallel algorithms. The closure properties of complexity classes are used to model combinational relations between parallel computing devices. This paper investigates the closure property of two-way alternating pushdown automata with only universal states which have inkdots and sublogarithmic space. By using the technique of reduction to absurdity, it is shown in this paper that for any function L(n) such that L(n)≥log log n and L(n) =o(log n), the class of sets accepted by weakly (strongly) L(n) space-bounded multi-inkdot two-way alternating pushdown automata with only universal states is not closed under concatenation with regular sets, length-preserving homomorphism, and Kleene closure.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第10期109-112,120,共5页 Periodical of Ocean University of China
基金 国家自然科学基金项目(40806040)资助
关键词 交替式下推自动机 对数以下空间限定 闭包属性 墨水点 alternating pushdown automata sub-logarithmic space-bounded closure property inkdot
  • 相关文献

参考文献15

  • 1Ranjan D,Chang R,Hartmanis J.Space bounded computations:review and new separation[J].Theoretical Computer Science,1991,80:289-302.
  • 2Geffert V.Nondeterministic computations in sublogarithmic space and space constructability[J].SIAM J Computations,1991,20(3):484-498.
  • 3Inoue K,Ito A,Takanami I.A relationship between non-deterministic Turing machines and 1-inkdot Turing machines with small space[J].Information Processing Letters,1992,43:225-227.
  • 4Inoue K,Ito A,Takanami I,et al.A note on multi-inkdot nondeterministic Turing machines with small space[J].Information Processing Letters,1993,48:285-288.
  • 5Chandra A,Kozen D,Stockmeyer L.Alternation[J].J ACM,1981,28(1):114-133.
  • 6Braunmühl B,Gengler R,Rettinger R.The alternation hierarchy for sub-logarithmic space is infinite[J].Computational Complexity,1993,3:207-230.
  • 7Chang J,Ibarra O,Ravikumar 13.Some observations concerning alternating Turing machines using small space[J].Information Processing Letters,1987,25:1-9.(Erratum:Information Processing Letters,1988,27:53).
  • 8Ito A,Inoue K,Takanami I.A note on alternating Turing machines using small space[J].IEICE Trans Inf & Syst,1987,ET0(10):990-996.
  • 9Liskiewicz M,Reischuk R.The complexity world below logarithmic space[C].Amsterndam:Proceedings of the Ninth Annual Structure in Complexity Theory,1994:64-78.
  • 10Inoue K,Ito A,Takanami I.On 1-inkdot alternating Turing machines with small space[J].Theoretical Computer Science,1994,127:171-179.

二级参考文献14

  • 1Ranjan D, Chang R, Hartmanis J. Space bounded computations: Review and new separation results. Theoretical Computer Science, 1991, 80: 289-302.
  • 2Geffert V. Nondeterministic computations in sublogarithmic space and space constructability. SIAM J. Comput, 1991, 20(3): 484-498.
  • 3Chandra A K, Kozen D C, Stockmeyer L J. Alternation. J. ACM, 1981, 28(1): 114-133.
  • 4Chang J H, Ibarra O H, Ravikumar B. Some observations concerning alternating Turing machines using small space. Information Processing Letters, 1987, 25: 1-9, 1987 (Erratum: Information Processing Letters, 1988, 27: 53.)
  • 5Ito A, Inoue K, Takanami I. A note on alternating Turing machines using small space. IEICE Trans. Inf. & Syst, 1987, E70(10): 990-996.
  • 6Li'skiewicz M, Reischuk R. The sublogarithmic alternating space world. SIAM J. Comput, 1996, 25(4): 828-861.
  • 7Szepietowski A. Turing machines with sublogarithmic space. Lecture Notes in Computer Science 843. Berlin: Springer-Verlag, 1994, pp.89-94.
  • 8Inoue K, Ito A, Takanami I. On 1-inkdot alternating Turing machines with small space. Theoretical Computer Science, 1994, 127: 171-179.
  • 9Xu J. Alternating pushdown automata with sublogarithmic space [Dissertation]. Yamaguchi University, 1998.
  • 10Xu J, Inoue K, Wang Y, Ito A. A note on alternating pushdown automata with sublogarithmic space. IEICE Trans. Inf. & Syst, 1996, E79-D(4): 259-270.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部