期刊文献+

外部区域上半线性椭圆型方程的正解

Positive Solution for a Semilinear Elliptic Equation in Exterior Domains
下载PDF
导出
摘要 运用变分法和Hardy不等式证明一类方程{-Δu-μu|x|2=g(x)|u|q-2u+f(x,u),x∈Ω;u=0,x∈Ω外部区域上解的存在性。其中ΩRN(N≥3)是一个外部区域,即Ω=RN\Ω0,Ω0是包含原点的有界光滑区域,μ>0,2<q<2*,2*=N2-N 2,2*(σ)=2(NN--2σ),S(q)<σ<S(2),S(q)=N-q(N-2)/2。 Using variation methods and Hardy inequality,the existence of solutions to a kind of semi linear elliptic equation{-Δu-μ u| x | 2 = g(x) | u | q-2u + f(x,u),x ∈ Ω;u = 0,x ∈Ω is proved.where ΩRN(N ≥3) is an exterior domain,which is Ω = RN /Ω0,and Ω0 is a bounded domain with smooth boundary,μ 0,2 q 2*,2* = N2-N 2,2*(σ) = 2(NN--2σ),S(q) σ S(2),S(q) = N-q(N-2)/2.
作者 郭竹梅
出处 《北京联合大学学报》 CAS 2010年第3期68-73,共6页 Journal of Beijing Union University
关键词 半线性椭圆方程 变分法 HARDY不等式 解的存在性 semilinear elliptic equation variation methods Hardy inequality existence of solutions
  • 相关文献

参考文献8

  • 1Jannelli E.The role played by space dimension in elliptic critical problems[J].J Diff Eq,1999,156(2):407-426.
  • 2Carcia J,Peral I.Hardy inequalities and some critical elliptic and parabolic problems[J].J Diff Eq,1998,144(2):441-476.
  • 3Ghoussoub N,Yuan C.Multiple solutions for quasi-linear PDES involving the critical Sobolev-Hardy exponents[J].Trans Amer Math Soc,2000,352(12):5703-5743.
  • 4Cheng Ting.Existence of minimal positive solution for -Δu-μ(u)/(|x|2)=u2·-1+σf(x)[J].Journal of Central China Normal University:Natural Sciences,2001,35(2):136-140.
  • 5Kang Dongsheng,Deng Yinbing.Existence of solution for a singular critical elliptic equation[J].J Math Anal Appl,2003,284(2):724-732.
  • 6康东升,朱小琨.外部区域上半线性椭圆方程的多解[J].华中师范大学学报(自然科学版),2003,37(1):3-5. 被引量:4
  • 7陆文端.微分方程中的变分方法[M].北京:科学出版社,2002:377—385.
  • 8Tehrani H.Solutions for indefinite semilinear elliptic equations in exterior domains[J].J Math Anal Appl,2001,255(1):308-318.

二级参考文献11

  • 1[1]Jannelli E. The role played by space dimension in elliptic critical problems[J]. J Diff Eq, 1999,156(2) :407~426.
  • 2[2]Garcia J, Peral I. Hardy inequalities and some critical elliptic and parabolic problems[J]. J Diff Eq, 1998,144(2):441~476.
  • 3[3]Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev-Hardy exponents [J].Trans Amer Math Soc, 2000,352(12):5 703~5 743.
  • 4[4]Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations[J]. J Diff Eq,2001,177(2): 494~522.
  • 5[5]Simader C G, Sohr H. The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains [M]. Harlow:Addison-Wesley/ Longman, 1996.
  • 6[6]Tehrani H. Solutions for indefinite semilinear eliptic equations in exterior domains[J]. J Math Anal Appl, 2001,255(1):308~318.
  • 7[7]Rabinowitz P H. Variational Methods for Nonliinear Eigenvalue Problems[M]. Rome: Edicioni Gremonese, 1974.
  • 8[8]Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applcation[J]. J Funt Analy, 1973,14(2) :349~381.
  • 9[9]Munyamarere F, Willem M. Multiple solutions of semilinear elliptic equations on RN[J]. J Math Anal Appl, 1994, 187(3):526~537.
  • 10[10]Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order [M]. Berlin, Heidelberg, New York: Springer-Verlag, 1998.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部