期刊文献+

卫星轨控推进器尾焰红外辐射的数值模拟 被引量:3

Numerical Simulation of the Infrared Radiation of Satellite Orbit-control Thruster Plume
下载PDF
导出
摘要 为全面了解卫星的红外辐射特性,需掌握卫星轨控推进器尾焰的红外辐射特性。按照先计算尾焰的流场、再计算尾焰的吸收系数、最后用有限体积法求解尾焰红外辐射亮度的先后顺序,较完整地建立了卫星轨控推进器尾焰红外辐射的求解模型。根据该模型计算得到的尾焰辐射亮度,进一步求解获得了1000~4500cm^-1内的光谱和波段辐射强度。通过分析,光谱辐射强度在1525cm^-1、1700cm^-1、2155cm^-1、2175cm^-1、2350cm^-1和3750cm^-1附近的数值较大;到喷管出口截面的垂直距离不同,最大的波段辐射强度可能对应不同的方位角。在波数2350cm^-1和3750cm^-1附近,光谱辐射强度与同类文献中的计算结果能够相互吻合。此结果表明,该模型具有较高的可行性和精确性。 To totally obtain infrared characteristic of satellites, it was necessary to know the infrared characteristic of satellite orbit-control thruster plume. A complete model for calculating the infrared radiation of satellite orbit-control thruster plume was founded. The model calculated the plume flow field, absorption coefficient and radiative luminance by using Finite Volume Method (FVM) in order. According to the spectral luminance obtained by using the model, the spectral and band radiative intensity at the range of 1 000-4 500 cm^-1 were calculated further. Through analysis of the intensity, the spectral intensity values at 1 525cm^-1, 1 700cm^-1, 2 155 cm^-1, 2 175cm^-1, 2 350cm^-1 and 3 750cm^-1 are larger than the values at other spectrums; and the largest band intensity may be corresponding to different azimuth angle at different vertical distance to the nozzle exiting plane. The figure of spectral intensity curve at 2 350 cm^-1 and 3 750cm^-1 well agrees with the figures in similar papers. The result shows that the calculation model is reliable and accurate.
出处 《光电工程》 CAS CSCD 北大核心 2010年第10期6-10,共5页 Opto-Electronic Engineering
基金 国家863计划项目
关键词 轨控推进器 尾焰 有限体积法 红外辐射强度 orbit-control thruster plume finite volume method infrared radiative intensity
  • 相关文献

参考文献8

二级参考文献30

共引文献91

同被引文献35

  • 1张小英,朱定强,蔡国飙.固体火箭羽流红外特性的DOM法模拟及高度影响研究[J].宇航学报,2007,28(3):702-706. 被引量:20
  • 2张小英,朱定强,向红军,蔡国飙.液体火箭喷焰红外特性的数值仿真[J].北京航空航天大学学报,2005,31(11):1250-1253. 被引量:9
  • 3樊士伟,张小英,朱定强,向红军,蔡国飙.用FVM法计算固体火箭羽流的红外特性[J].宇航学报,2005,26(6):793-797. 被引量:25
  • 4魏钢.F-22“猛禽”战斗机[M].北京:航空工业出版社,2008:19-21.
  • 5Vamey G E. Infrared signature measurement techniques and simulation methods for aircraft survivability [C]//AIAA, SAE, and ASME, Joint Propulsion Conference, Las Vegas, United States, June 18-20, 1979:10-11.
  • 6Siegel R, Howell J R. Thermal radiation heat transfer [M]. Washington DC: Hemisphere and McGraw-Hill, 1981 : 322-325.
  • 7Ludwing C B, Malkus W, Reardon J E, et al. Hand-book of infrared radiation from combustion [M]. NASA-SP-3080, 1973: 222-230.
  • 8Fengshan Liu, Omer L Giiilder, Gregory J Smallwood. Three-dimensional non-grey gas radiative transfer analyses using the statistical narrow-band model [J]. International Journal of Heat and Mass Transfer(S0017-9310), 1998, 37: 759-768.
  • 9Lozanova M, Stantov E Experimental Investigation on the Similarity of a 3D Rectangular Turbulent jet [J]. Experements in Fluid(S0723-4864), 1998, 24: 470-478.
  • 10H. F. Nelson. Infrared radiation signature of tactical rocket exhausts [C]. St. Louis, Missouri: AIAA, 1985: AIAA-82-0913.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部