期刊文献+

一种动态模板匹配的卡尔曼滤波跟踪方法 被引量:8

Object Tracking Algorithm Based on Combining Dynamics Template Matching and Kalman Filter
下载PDF
导出
摘要 在视频跟踪系统中,运动目标检测是实现跟踪的前提和难点。为了能够有效地检测出目标,提出了一种基于动态模板匹配和卡尔曼滤波的目标跟踪算法。首先将前两帧图像差分检测运动目标区域,提取特征点;然后利用卡尔曼滤波在搜索区域中找到与目标模型最匹配的候选目标位置并与当前帧目标模板进行匹配;最后将特征点流失率作为限定阈值,采用模板更新策略动态更新模板。跟踪实验表明,该算法具有很好的匹配精度与实时性,对目标姿态变化、大小变化、遮挡问题等有很好的鲁棒性。 The moving object detection is a prerequisite and difficult point in the video tracking system to realize tracking In order to detect moving object effectively, an object tracking algorithm is proposed based on combining dynamics template matching and Kalman filter. First, make the former two frames inter-difference to get the area of the moving object and extract the feature points. Then, find the best match with the object model candidate object location by Kalman filter in the search area and match it with the object template of the current frame. Finally, the loss rate of feature points will serve as the limited threshold, and we update template according to dynamic template update strategy. Several experiments of the object tracking show that the approach is accurate and fast, and it has a better robust performance during the posture changing, the size changing and the shelter instance.
出处 《光电工程》 CAS CSCD 北大核心 2010年第10期29-33,共5页 Opto-Electronic Engineering
基金 863基金资助项目(2010AAJ206)
关键词 动态模板更新 卡尔曼滤波 特征点提取 尺度变化特征不变 帧间差分 dynamic template update Kalman filter extraction of feature filter SIFT inter-frame difference
  • 相关文献

参考文献8

二级参考文献28

  • 1高勤,李志强,都学新.一种新型自适应卡尔曼滤波算法[J].现代雷达,2001,23(6):29-34. 被引量:18
  • 2王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 3HARITAOGLU I, HARWOOD D, Davis L S. W-4: Real-time surveillance of people and their activities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2000, 22(8): 809-830.
  • 4NING H, TAN T, WANG L, et al. People tracking based on motion model and motion constraints with automatic initialization [J]. Pattern Recognition(S0031-3203), 2004, 37(7): 1423-1440.
  • 5COLLINS R, LIPTON A, KANADE T. A system for video surveillance and monitoring [R]. CMU-RI-TR-00-12, 2000.
  • 6SCHLEGEL C, ILLMANN J, JABERG H, et al. Vision based person tracking with a mobile robot[C]//Proceedings of the British Machine Vision Conference,. Southampton, UK: [s.n.], 1998, 2: 418-427.
  • 7JUNG B, SUKHATME G S. Detecting moving objects using a single camera on a mobile robot in an outdoor environment [C]// International Conference on InteiligentAutonomous Systems. Amsterdam, Netherlands: [s.n.], 2004: 980-987.
  • 8COMANICIU D, RAMESH V, MEER R Real-time tracking of non-rigid objects using Mean shifi[C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, USA: [s.n.], 2000: 142-149.
  • 9KALMAN R E. A new approach to linear filtering and prediction problems [J]. Transaction of the ASME-Journal of Basic Engineering(S0021-9223), 1960(82): 35-45.
  • 10COMANICIU D, RAMESH V. Mean shift and Optimal Prediction for Efficient Object Tracking [J]. International Conference on ImageProeessing(S1522-4880), 2000, 3: 70-73.

共引文献53

同被引文献59

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部