期刊文献+

一类Liénard方程Poincaré分岔极限环的不存在性 被引量:1

Nonexistence of Limit Cycles of a Class of Generalized Liénard Equations in the case of Poincaré Bifurcation
下载PDF
导出
摘要 利用一阶Mel′nikov函数,讨论了广义Liénard方程+εf(x,x.)x.+g(x)=0的Poincaré分岔极限环的不存在性,得出了两个主要充分条件和若干判别准则。 The nonexistence of limit cycles of a class of generalized Liénard equations was discussed in the case of Poincaré bifurcation.Some criteria and two sufficient conditions were obtained.
作者 吕宝红
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2010年第5期762-764,798,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
关键词 Mel′nikov函数 LIÉNARD方程 极限环 Poincaré分岔 Mel′nikov function Liénard equations limit cycles Poincaré bifurcation
  • 相关文献

参考文献10

  • 1CUSHMAN R S.A condimension two bifurcation with a third order picard-fuchs equation[J].Journal of Differential Equations,1985(59):243-256.
  • 2RASAUL A,HAMID R Z Z.Bifurcations of limit cycles from quintic hamiltonian systems with an eye-figure loop(Ⅰ)[J].Nonlinear Analysis,2008(68):2957-2976.
  • 3RASAUL A,HAMID R Z Z.Bifurcations of limit cycles from quintic hamiltonian systems with an eye-figure loop(Ⅱ)[J].Nonlinear Analysis,2008(69):4143-4162.
  • 4宋燕.具有全局中心的三次Hamilton系统的Poincaré分支[J].数学学报(中文版),2004,47(2):291-298. 被引量:9
  • 5宋燕.一平面Hamilton系统的Abel积分的零点个数估计[J].Journal of Mathematical Research and Exposition,2003,23(4):651-657. 被引量:7
  • 6LI C Z,ZHANG Z F.A criterion for determining the monotonicity of the ratio of two abelian integrals[J].Journal of Differential Equations,1996(124):407-424.
  • 7ZENG X W,JING Z J.Monotonicity and critical points of period[J].Progress in Natural Science,1996,6(3):282-286.
  • 8岳喜顺.Liénard方程Poincaré分岔极限环的唯一性[J].数学学报(中文版),2005,48(2):377-384. 被引量:5
  • 9吕宝红,龙品红.一类非线性微分方程极限环的不存在性[J].武汉理工大学学报(信息与管理工程版),2010,32(3):396-398. 被引量:5
  • 10ZHANG Z F,LI C Z,ZHANG Z M,et al.Elementary bifurcation theory of vector fields[M].Beijing:Higher Education Press,1997:25-63.

二级参考文献20

  • 1胡雪明.广义Lienard方程周期解不存在性[J].应用数学,1996,9(1):23-25. 被引量:5
  • 2.[D].,.
  • 3ZHENG Z H.On the nonexistence of periodic aolutions for Liénard equations[J].Nonlineear Anal,1991,16(6):101-110.
  • 4SUGIE J.Nonexistence of periodic solutions of the Liénard system[J].Journal of Math Anal and Appl,1991,159(1):224-236.
  • 5欧阳资考.一类Liénard方程闭轨的不存在性[J].内江师范学院学报,2007,22(4):25-27. 被引量:3
  • 6NOVIKOV D, YAKOVENKO S. Simple exponential estimate for the number of real zeros of complete Abelian integrals [J]. Ann Inst Fourier, Grenoble, 1995, 45: 897--927.
  • 7Zhao Y. L., Abelian integrals for cubic Hamilton vector Fields, The Doctoral Thesis in Peking University,1998.
  • 8Li G. Z., Li W. G., Llibre J., Zhang Z. F., Bifurcation of limit cycles from quadratic isochronous centers,Barcelona, CRM Preprint, 413.
  • 9Zhang Z. F., Li C. Z., Zheng Z. M. et al., The basis of bifurcation theory for vector fields, Beijing: ChinaHigher Education Press, 1997, 94-104.
  • 10赵丽琴,吕宝红.几类非线性微分方程闭轨线的不存在性[J].数学进展,2007,36(4):476-484. 被引量:4

共引文献18

同被引文献5

  • 1吕宝红,郑冬云,马超人.广义Liénard方程Poincaré分岔极限环的唯一性和不存在性[J].装甲兵工程学院学报,2010,24(3):90-94. 被引量:1
  • 2Cushman R,Sanders J A. A Codimension Two Bifurcation with a Third Order Picard-Fuchs Equation[J].Journal of Differential Equations,1985,(02):243-256.
  • 3Li C Z,Zhang Z F. A Criterion for Determining the Monotonicity of the Ratio of Two Abelian Integrals[J].Journal of Differential Equations,1996,(02):407-424.
  • 4Zeng X W,Jing Z J. Monotonicity and Critical Points of Period[J].Progress in Natural Science,1996,(03):282-286.
  • 5Yue X S. The Uniqueness of Limit Cycles from Poincaré Bifurcation of Liénard Equation[J].Acta Mathematica Sinica,2005,(02):377-384.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部