摘要
本文在W22空间中讨论了第一类Fredholm积分方程的求解问题。利用W22空间的再生核,构造了方程的Hermite数值解u2n(x),并证明了当节点无限加密时,u2n(x)一致收敛于解析解u(x),u′2n(x)一致收敛于u′(x)。且每增加一个节点,误差按Sobolev范数单调下降。
Abstract In this paper, the problem seeking solution to Fredholm integral equation of first kind is discussed in the space W 2 2 . By the reproducing kernel of the space W 2 2 , the hermitean numerical solution u 2n (x) of the equation is constructed, it is also proved that, as the desity of the node system increases infinitely, u 2n (x) uniformly corverge to the analytic solution u(x) and u ′ 2n (x) uniformly coverge to u′(x) . Furthermore, the error can be monotoically decreased in the sobolev norm as the nodes number n increases.
出处
《工程数学学报》
CSCD
北大核心
1999年第2期99-103,共5页
Chinese Journal of Engineering Mathematics
基金
黑龙江省自然科学基金