期刊文献+

基于Relief算法的故障图像识别与匹配方法 被引量:4

A Method of Malfunction Images Recognition and Classification Based on Relief
下载PDF
导出
摘要 针对图像识别与匹配问题,提出一种基于Relief算法的新方案。利用k最近邻的Relief算法选择表达图像的最优特征子集,再利用基于最小距离分类器的模板匹配技术,实现故障图像的识别。在特征提取时,改进了对传统的灰度共生矩阵的选取。实验证明,该算法正确识别图像故障与否的概率能到达90%左右,提高了特征选择的有效性,完全满足实际应用中的需要。 A new method based on Relief algorithm was proposed to solve image identification problem.K neighbor Relief algorithm was used to choose the optimal feature subset of images.Minimum distance of template matching was used in image recognition.This method improved the selection of gray co-occurrence matrix.Experiments indicated that the current recognition probability can reach 90%,this algorithm not only resulted a substantial improvement in the feature selection,but also met the needs of practical engineering.
出处 《兵工自动化》 2010年第10期60-63,共4页 Ordnance Industry Automation
基金 河南省教育厅自然科学基金项目(2010A510014) 郑州市科技攻关项目(0910SGYG25229-6)
关键词 RELIEF算法 最小距离分类器 灰度共生矩阵 relief algorithm minimum distance classifier gray co-occurrence matrix
  • 相关文献

参考文献9

  • 1Marko R S,Kononenko I.Comperhensible interpretati-on of relief estimates[C] // In:Brodley C E,Danyluk AP,Eds.Proceedings of the 18th International Conferen-ce on Machine Learning.San Fransisco:Morgan Kaufmanm,2001:440-443.
  • 2Kononenko I.Estimation Attributes:Analysis and Ext-ensions of Relief[C] // Proceedings of the 1994 European Conference on Machine Learning,1994:171-182.
  • 3Haralick RM,Shanmugam K,Dinstein I Textural fea-tures for image classification[J].IEEE Transactions on Systems,Man,and Cybemetics,1973,3(6):610-621.
  • 4Soh K S,Tsatsoulis C.Texture analysis of SAR se-a ice imagery using gray level co-ocuurrence matrices[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):780-795.
  • 5Ulaby F T,Kouyate F,Brisco V,Textural informati-on in SAR Images[J].IEEE Transactions on Geoscien-ce and Remote Sensing,1986,24(2):235-245.
  • 6Janobl Al,Abdulrah MAN.Performance evaluation of crossdiagonal texture matrix method of texture anal-ysis[J].Pattern Recognition,2001,34(1):171-180.
  • 7Clausl D A,Jemigan M E.A fast method to determi-ne co-occurrence texture features[J].IEEE Transactions on Geoscience and Remote Sensing,1988,36(1):298-300.
  • 8Robnik Sikonjam,Kononenko I.Theoretical and Emp-irical Analysis of ReliefF and RReliefF[J].Machine Learning,2003,53(1):23-69.
  • 9Rafael Gonzalez,Richard E.Digital Image Processing Using MATLAB[M].Publishing House of Electroni-cs Industry,2004:364-368.

同被引文献27

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部