摘要
设Q是任意一个凸多面体,P_n是含于Q内的任意一个凸n面体.令L(Q)表示Q的所有棱的长度之和,我们从Frankl-Maehara-Nakashima的最新结果导出如下更一般的不等式: L(P_n)<(n/3)L(Q)从而推广和证明厂杨路先生提出的猜想.
Let Q be arbitrary a convex polyhetlron in R3 Pn be arbitrary a convex polyhedron contained in Q and Pn has n faces, L(Q) denotes the Suin of edge-lengths of Q. We establish a excellent conclusion: L(Pn) < ('2/3)L(Q). It proves and extends the guess gived by professor YangLu.
出处
《数学的实践与认识》
CSCD
1999年第2期123-125,共3页
Mathematics in Practice and Theory