摘要
设X1;…,Xn(n>p)是来自多元正态分布Np(μ,∑)的一个样本,其中μ∈R~p,∑>0均未知.本文在熵损失 L(sum from to ~,∑)=tr(∑~-1,sum from to ~)-log|∑~-1sum from to~|-p下证明了协方差矩阵∑的最佳仿射同变估计是不容许的,且给出了其改进估计.
Let X1,…, X_n (n > p) be a random sample from multivariate normal distribution N_p(μ, ∑), where μ ∈RP and ∑ is a positive definite matrix, both μ and ∑ being unknown. In this paper it is shown for the entropy loss L(sum from to ^,∑ ) = tr(∑^-1 sum from to^) - log|Σ^-1 sum from to ^|-p the best affine equivariant estimator of the covariance matrix ∑ is inadmissible and an improved estimator is explicitly constructed.
出处
《应用概率统计》
CSCD
北大核心
1999年第2期168-175,共8页
Chinese Journal of Applied Probability and Statistics
基金
the National Natural Science Foundation of China.
关键词
协方差阵
熵损失
估计
最佳仿射估计
多元分布
Best affine equivariant estimator, covariance matrix, entropy loss, multivariate normal distribution