摘要
设(Ω,F,μ)为任一测度空间,μ可以为无限测度,本文给出了L1(Ω,F,μ)的任一子集为弱相对紧的充要条件。此外,当μ为 限测度时,我们还讨论了(Ω,F)上关于μ绝对连续的有限广义测度的集集收敛性,得到了较为满意的结果,它可看作是Vitali-Hahn-Saks定理的推广。
Let ( Ω,F,μ)
be any complete measurable space, may be infinite measure.In this paper, a sufficient and
necessary condition about the weak compactness of thesets of L1 ( Ω,F,μ) is obtained.
Furtherimore, when be infinite measure, we considerthe sets by sets convergence for finite
generalized measures defined on the measurablespace ( Ω,F) which are absolutely continuous
with and obtained some interestingresults which generalize the Vitali-Hahn-Saks theorem.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1999年第3期417-422,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金