期刊文献+

烟叶致香成分相关性分析研究 被引量:1

Correlation Analysis On Aroma Constituents of Tobacco Leaves
下载PDF
导出
摘要 烟叶致香成分数据具有"小样本、高维数、模糊和非线性"等特点,传统的统计分析方法难以有效解决其相关性问题。本文综合运用M5P模型树、mRMR特征选择以及神经网络等多种智能方法解决致香成分之间复杂的非线性问题,并结合行业专家经验,客观地对多种方法结论进行验证和评价,得出具有概括性的最终特征参数。综合分析方法拟补了传统分析方法的不足,提高了数据分析结果的准确度。 Because aroma constituents of flue-cured tobacco leaves are characteristic of small sample,high-dimension,fuzzy and nonlinearity,Its relevancy is difficult to be resolved by adopting traditional statistics methods.In this article,several computational intelligent approaches including M5P model tree、mRMR feature extraction and neural network were comprehensively adopted to resolve nonlinear problem between different aroma constituents.In addition,combining abundant expert experiences,conclusions given by a variety of methods were chosen and final characteristic parameters were obtained.Comprehensive analysis methods make up the inadequacy of traditional analysis methods and improve the accuracy of the data analysis results.
出处 《微计算机信息》 2010年第28期236-238,共3页 Control & Automation
关键词 特征选择 最大相关最小冗余 M5P模型树 相关性分析 Feature Extraction Minimum Redundancy Maximum Relevance M5P model tree Correlation Analysis
  • 相关文献

参考文献4

  • 1I.H. Witten, E.Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations [M]. Morgan Kaufmann, San Francisco, 1999.
  • 2Y. Wang, I.H. Witten. Induction of model trees for predicting continuous classes. Proceedings of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics, Prague, 1997.
  • 3柴玉梅,王宇.基于TFIDF的文本特征选择方法[J].微计算机信息,2006,22(08X):24-26. 被引量:32
  • 4梅时春,李人厚,罗印升.过程监控中数据挖掘与知识发现理论及应用[J].微计算机信息,2002,18(2):1-3. 被引量:6

二级参考文献9

共引文献36

同被引文献9

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部