期刊文献+

几种期权的方差最优对冲策略 被引量:1

Variance-optimal hedging strategy for several options
下载PDF
导出
摘要 在支付红利的情况下,考虑了两值期权CONC和AONC,计算了其离散时间方差最优对冲策略,给出其显式表达式.并由此给出欧式看涨期权的最优对冲策略.最后,给出分红的预测例子. This paper explicitly computed the variance-optimal hedging strategy in discrete time for binary options and European call option on Dividend-paying Stock. An example of prediction of dividend was given.
作者 徐耸
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期49-55,共7页 Journal of East China Normal University(Natural Science)
基金 安徽省自然科学重点基金(KJ2010A234) 安徽省高校自然科学研究项目(KJ2010B451)
关键词 两值期权 欧式看涨期权 对冲 binary option European call option hedging martingale
  • 相关文献

参考文献10

  • 1SCHWEIZER M.Variance-optimal hedging in discrete time[J].Mathematics of Operations Research,1995,20:1-32.
  • 2GOBET E,TEMAM E.Discrete time hedging errors for options with irregular payoffs[J].Finance and Stochastics,2001(5):357-367.
  • 3FOLLMER H,SONDERMANN D.Hedging of non-redundant contingent claims[M]// Hildebrand W and MasColell Contributions to Mathematical Economics[S.L]:North-Holland,1986.
  • 4GEISS S.Quantitative approximation of certain stochastic integrals[J].Stoch Stochastics and Stochastics Reports,2002,73(3-4):241-270.
  • 5ZHANG R.Couverture approchee des options europeennes[D/OL].Paris:Ecole Nationale des Ponts et Chaussees,1999.http://cermics.enpc.fr/theses/99/zhang-ruotao.ps.gz.
  • 6HYASHI T,MYKLAND P A.Evaluatiing hedging errors:an asymptotic approach[J].Mathematical Finance,2005,15(2):309-343.
  • 7JIANG L S.Mathematical Modeling and Methods of Option Pricing[M].Singapore:World Scientific Publishing Company,2005.
  • 8HULL J.Options,Futures,and Other Derivatives[M].Englewood Cliffs NJ:Prentice Hall,1999.
  • 9COMPANY R,GONZALEZ A L,JODAR L.Numerical solution of modified Black-Scholes equation pricing stock options with discrete dividend[J].Mathematical and Computer Modelling,2006,44:1058-1068.
  • 10BALLESTER C,COMPANY R,JODAR L.An efficient method for option pricing with discrete dividend payment[J].Computers and Mathematics with Applications,2008,56:822-835.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部