摘要
尖峰孤立子是一个非线性色散方程的尖峰孤立波解,是浅水波理论中的一个模型.本文通过构造一个泛函和守恒律来证明DGH方程的尖峰孤立子在H^1中的轨道稳定性.该稳定性定理表明,如果一个波在开始时与尖锋孤立子接近,则在之后的任何时间仍然与它接近.
The peakons are peaked solitary wave solutions of a certain nolinear dispersive equation that is a model in shallow water theory. In this paper, the author showed that the peaked solitons to the DGH equation were orbital stable in H1 norm by constructing a functional and conservation laws. The stability theorem indicates that, if a wave is close to the peakons at the beginning, it will remain close to some translate of it at any time later.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第5期67-72,83,共7页
Journal of East China Normal University(Natural Science)
基金
霍英东教育基金(111002)
上海市青年科技启明星跟踪计划(08QH14006)
曙光计划(07SG29)