期刊文献+

DGH方程的尖峰孤立子的稳定性 被引量:1

Stability of peakons for the DGH equation
下载PDF
导出
摘要 尖峰孤立子是一个非线性色散方程的尖峰孤立波解,是浅水波理论中的一个模型.本文通过构造一个泛函和守恒律来证明DGH方程的尖峰孤立子在H^1中的轨道稳定性.该稳定性定理表明,如果一个波在开始时与尖锋孤立子接近,则在之后的任何时间仍然与它接近. The peakons are peaked solitary wave solutions of a certain nolinear dispersive equation that is a model in shallow water theory. In this paper, the author showed that the peaked solitons to the DGH equation were orbital stable in H1 norm by constructing a functional and conservation laws. The stability theorem indicates that, if a wave is close to the peakons at the beginning, it will remain close to some translate of it at any time later.
作者 陈会萍
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期67-72,83,共7页 Journal of East China Normal University(Natural Science)
基金 霍英东教育基金(111002) 上海市青年科技启明星跟踪计划(08QH14006) 曙光计划(07SG29)
关键词 稳定性 DGH方程 孤立子 stability the DGH equation peakons
  • 相关文献

参考文献15

  • 1DULLIN H,GOTTWALD G,HOLM D.An integrable shallow water equation with linear and nonlinear dispersion[J].Phy Rev Lett,2001,87:1945-1948.
  • 2BONA J L,SMITH R.The initial-value problem for the Korteweg-de Vries equation.Philos[J].Trans Roy Soc London Ser A,1975,278(1287):555-601.
  • 3KATO T.On the Korteweg-de Vries equation[J].Manuscripta Math,1979,28(1-3):89-99.
  • 4WHITHAN G B.Linear and Nonlinear Waves[M].New York:Wiley,1974.
  • 5BOURGAIN J.Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II:The KdV equation[J].Geom Funct Anal,1993(3):209-262.
  • 6KENIG C,PONCE G,VEGA L.Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[J).Comm Pure Appl Math,1993,46:527-620.
  • 7TAO T.Low-regularity global solutions to nonlinear dispersive equations[C]// Surveys in Analysis and Operator Theory Proc Centre Math Appl Austral Nat Univ 40.Canberra:Austral Nat Univ,2002:19-48.
  • 8DRAZIN P G,JOHNSON R S.Solitons:An Introduction[M].Cambridge:Cambridge University Press,1989.
  • 9ZHOU Y,GUO Z G.Blow up and propagation speed of solutions to the DGH equation[J].Discrete and Continuous Dynamical Systems Series B,2009(12):657-670.
  • 10KATO T.Quasi-Linear equations of evolution,with applications to partial differential equation[M]// Spectral Theory and Differential Equation:Lecture Notes in Math 448.Berlin:Springer verlag,1975:25-70.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部